当前位置: X-MOL 学术Knowl. Eng. Rev. › 论文详情
Adaptive computational SLAM incorporating strategies of exploration and path planning
The Knowledge Engineering Review ( IF 1.257 ) Pub Date : 2019-12-02 , DOI: 10.1017/s0269888919000183
Jacky Baltes; Da-Wei Kung; Wei-Yen Wang; Chen-Chien Hsu

Simultaneous localization and mapping (SLAM) is a well-known and fundamental topic for autonomous robot navigation. Existing solutions include the FastSLAM family-based approaches which are based on Rao–Blackwellized particle filter. The FastSLAM methods slow down greatly when the number of landmarks becomes large. Furthermore, the FastSLAM methods use a fixed number of particles, which may result in either not enough algorithms to find a solution in complex domains or too many particles and hence wasted computation for simple domains. These issues result in reduced performance of the FastSLAM algorithms, especially on embedded devices with limited computational capabilities, such as commonly used on mobile robots. To ease the computational burden, this paper proposes a modified version of FastSLAM called Adaptive Computation SLAM (ACSLAM), where particles are predicted only by odometry readings, and are updated only when an expected measurement has a maximum likelihood. As for the states of landmarks, they are also updated by the maximum likelihood. Furthermore, ACSLAM uses the effective sample size (ESS) to adapt the number of particles for the next generation. Experimental results demonstrated that the proposed ACSLAM performed 40% faster than FastSLAM 2.0 and also has higher accuracy.
更新日期:2020-03-20

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug