当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
A User-Independent Successive Interference Cancellation Based Coding Scheme for the Unsourced Random Access Gaussian Channel
IEEE Transactions on Communications ( IF 5.690 ) Pub Date : 2019-09-10 , DOI: 10.1109/tcomm.2019.2940216
Avinash Vem; Krishna R. Narayanan; Jean-Francois Chamberland; Jun Cheng

This work introduces a novel coding paradigm for the unsourced multiple access channel model. The envisioned framework builds on a select few key components. First, the transmission period is partitioned into a sequence of sub-blocks, thereby yielding a slotted structure. Second, messages are split into two parts. A portion of the data is encoded using spreading sequences or codewords that are designed to be recovered by a compressed sensing type decoder. In addition to being an integral part of the data, the information bits associated with this first part also determine the parameters of the low-density parity check code employed during the subsequent stages of the communication process. The other portion of the message is encoded using the aforementioned low-density parity check code. The data embedded in this latter stage is decoded using a joint message passing algorithm designed for the $T$ -user binary input real adder channel. Finally, devices repeat their codeword in multiple sub-blocks, with the transmission pattern being a deterministic function of message content independent of the identity of the device. When combined with successive interference cancellation, the ensuing communication infrastructure offers significant performance improvement compared to coding schemes recently published in the literature for unsourced random access.
更新日期:2020-01-04

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug