当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tensor Completion from Regular Sub-Nyquist Samples
IEEE Transactions on Signal Processing ( IF 5.4 ) Pub Date : 2020-01-01 , DOI: 10.1109/tsp.2019.2952044
Charilaos I. Kanatsoulis , Xiao Fu , Nicholas D. Sidiropoulos , Mehmet Akcakaya

Signal sampling and reconstruction is a fundamental engineering task at the heart of signal processing. The celebrated Shannon-Nyquist theorem guarantees perfect signal reconstruction from uniform samples, obtained at a rate twice the maximum frequency present in the signal. Unfortunately a large number of signals of interest are far from being band-limited. This motivated research on reconstruction from sub-Nyquist samples, which mainly hinges on the use of random/incoherent sampling procedures. However, uniform or regular sampling is more appealing in practice and from the system design point of view, as it is far simpler to implement, and often necessary due to system constraints. In this work, we study regular sampling and reconstruction of three- or higher-dimensional signals (tensors). We show that reconstructing a tensor signal from regular samples is feasible. Under the proposed framework, the sample complexity is determined by the tensor rank—rather than the signal bandwidth. This result offers new perspectives for designing practical regular sampling patterns and systems for signals that are naturally tensors, e.g., images and video. For a concrete application, we show that functional magnetic resonance imaging (fMRI) acceleration is a tensor sampling problem, and design practical sampling schemes and an algorithmic framework to handle it. Numerical results show that our tensor sampling strategy accelerates the fMRI sampling process significantly without sacrificing reconstruction accuracy.

中文翻译:

常规子奈奎斯特样本的张量完成

信号采样和重建是信号处理核心的一项基本工程任务。著名的香农-奈奎斯特定理保证了从均匀样本中完美的信号重建,以两倍于信号中最大频率的速率获得。不幸的是,大量感兴趣的信号远未受频带限制。这激发了对亚奈奎斯特样本重建的研究,这主要取决于随机/非相干采样程序的使用。然而,统一或定期采样在实践中和从系统设计的角度来看更有吸引力,因为它实施起来要简单得多,而且由于系统限制,通常是必要的。在这项工作中,我们研究了三维或更高维信号(张量)的常规采样和重建。我们表明从常规样本重建张量信号是可行的。在提议的框架下,样本复杂度由张量等级决定,而不是信号带宽。该结果为为自然张量(例如图像和视频)的信号设计实用的常规采样模式和系统提供了新的视角。对于一个具体的应用,我们表明功能磁共振成像 (fMRI) 加速是一个张量采样问题,并设计了实用的采样方案和算法框架来处理它。数值结果表明,我们的张量采样策略在不牺牲重建精度的情况下显着加速了 fMRI 采样过程。样本复杂度由张量等级决定,而不是信号带宽。该结果为为自然张量(例如图像和视频)的信号设计实用的常规采样模式和系统提供了新的视角。对于一个具体的应用,我们表明功能磁共振成像 (fMRI) 加速是一个张量采样问题,并设计了实用的采样方案和算法框架来处理它。数值结果表明,我们的张量采样策略在不牺牲重建精度的情况下显着加速了 fMRI 采样过程。样本复杂度由张量等级决定,而不是信号带宽。该结果为为自然张量(例如图像和视频)的信号设计实用的常规采样模式和系统提供了新的视角。对于一个具体的应用,我们表明功能磁共振成像 (fMRI) 加速是一个张量采样问题,并设计了实用的采样方案和算法框架来处理它。数值结果表明,我们的张量采样策略在不牺牲重建精度的情况下显着加速了 fMRI 采样过程。我们表明功能磁共振成像 (fMRI) 加速是一个张量采样问题,并设计了实用的采样方案和算法框架来处理它。数值结果表明,我们的张量采样策略在不牺牲重建精度的情况下显着加速了 fMRI 采样过程。我们表明功能磁共振成像 (fMRI) 加速是一个张量采样问题,并设计了实用的采样方案和算法框架来处理它。数值结果表明,我们的张量采样策略在不牺牲重建精度的情况下显着加速了 fMRI 采样过程。
更新日期:2020-01-01
down
wechat
bug