当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Learning Mixtures of Separable Dictionaries for Tensor Data: Analysis and Algorithms
IEEE Transactions on Signal Processing ( IF 5.230 ) Pub Date : 2019-11-06 , DOI: 10.1109/tsp.2019.2952046
Mohsen Ghassemi; Zahra Shakeri; Anand D. Sarwate; Waheed U. Bajwa

This work addresses the problem of learning sparse representations of tensor data using structured dictionary learning. It proposes learning a mixture of separable dictionaries to better capture the structure of tensor data by generalizing the separable dictionary learning model. Two different approaches for learning mixture of separable dictionaries are explored and sufficient conditions for local identifiability of the underlying dictionary are derived in each case. Moreover, computational algorithms are developed to solve the problem of learning mixture of separable dictionaries in both batch and online settings. Numerical experiments are used to show the usefulness of the proposed model and the efficacy of the developed algorithms.
更新日期:2020-01-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug