当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
On Low-Complexity Lattice Reduction Algorithms for Large-Scale MIMO Detection: The Blessing of Sequential Reduction
IEEE Transactions on Signal Processing ( IF 5.230 ) Pub Date : 2019-12-11 , DOI: 10.1109/tsp.2019.2959194
Shanxiang Lyu; Jinming Wen; Jian Weng; Cong Ling

Lattice reduction is a popular preprocessing strategy in multiple-input multiple-output (MIMO) detection. In a quest for developing a low-complexity reduction algorithm for large-scale problems, this paper investigates a new framework called sequential reduction (SR), which aims to reduce the lengths of all basis vectors. The performance upper bounds of the strongest reduction in SR are given when the lattice dimension is no larger than 4. The proposed new framework enables the implementation of a hash-based low-complexity lattice reduction algorithm, which becomes especially tempting when applied to large-scale MIMO detection. Simulation results show that, compared to other reduction algorithms, the hash-based SR algorithm exhibits the lowest complexity while maintaining comparable error performance.
更新日期:2020-01-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug