当前位置: X-MOL 学术Int. J. Geograph. Inform. Sci. › 论文详情
A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods
International Journal of Geographical Information Science ( IF 3.733 ) Pub Date : 2019-08-02 , DOI: 10.1080/13658816.2019.1648813
Yongjiu Feng; Xiaohua Tong

We develop a new geographical cellular automata (CA) modeling framework, named UrbanCA, through reconstructing the essential CA structure and incorporating nonspatial, spatial, and heuristic approaches. The new UrbanCA is featured by 1) the improvement of the CA modeling framework by reformulating relationships among CA components, 2) the development of two scaling parameters to adjust the effects of transition probability and neighborhood, 3) the incorporation of a variety of statistical and heuristic methods to construct transition rules, and 4) the inclusion of urban planning regulations and spatial heterogeneities to project future urban scenarios. To illustrate the effectiveness of UrbanCA, we calibrate a CA model using artificial bee colony (ABC) to simulate the past urban patterns and predict future scenarios in Shanghai of China. The results show that UrbanCA under different scaling parameters is comparable to CA-Markov (as a reference model) concerning the accuracy of the end-state and change simulations, and is better than CA-Markov regarding the driving factor’s ability to explain the modeling outcomes. UrbanCA provides more choices compared to existing CA software packages, and the models are readily calibrated elsewhere to simulate the dynamic urban growth and assess the resulting natural and socioeconomic impacts.

更新日期:2020-01-04

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug