当前位置: X-MOL 学术Int. J. Geograph. Inform. Sci. › 论文详情
A new cellular automata framework of urban growth modeling by incorporating statistical and heuristic methods
International Journal of Geographical Information Science ( IF 3.545 ) Pub Date : 2019-08-02 , DOI: 10.1080/13658816.2019.1648813
Yongjiu Feng; Xiaohua Tong

We develop a new geographical cellular automata (CA) modeling framework, named UrbanCA, through reconstructing the essential CA structure and incorporating nonspatial, spatial, and heuristic approaches. The new UrbanCA is featured by 1) the improvement of the CA modeling framework by reformulating relationships among CA components, 2) the development of two scaling parameters to adjust the effects of transition probability and neighborhood, 3) the incorporation of a variety of statistical and heuristic methods to construct transition rules, and 4) the inclusion of urban planning regulations and spatial heterogeneities to project future urban scenarios. To illustrate the effectiveness of UrbanCA, we calibrate a CA model using artificial bee colony (ABC) to simulate the past urban patterns and predict future scenarios in Shanghai of China. The results show that UrbanCA under different scaling parameters is comparable to CA-Markov (as a reference model) concerning the accuracy of the end-state and change simulations, and is better than CA-Markov regarding the driving factor’s ability to explain the modeling outcomes. UrbanCA provides more choices compared to existing CA software packages, and the models are readily calibrated elsewhere to simulate the dynamic urban growth and assess the resulting natural and socioeconomic impacts.
更新日期:2020-01-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug