当前位置: X-MOL 学术Int. J. Geograph. Inform. Sci. › 论文详情
Road and travel time cross-validation for urban modelling
International Journal of Geographical Information Science ( IF 3.733 ) Pub Date : 2019-08-29 , DOI: 10.1080/13658816.2019.1658876
Henry Crosby; Theodoros Damoulas; Stephen A. Jarvis

The physical and social processes in urban systems are inherently spatial and hence data describing them contain spatial autocorrelation (a proximity-based interdependency on a variable) that need to be accounted for. Standard k-fold cross-validation (KCV) techniques that attempt to measure the generalisation performance of machine learning and statistical algorithms are inappropriate in this setting due to their inherent i.i.d assumption, which is violated by spatial dependency. As such, more appropriate validation methods have been considered, notably blocking and spatial k-fold cross-validation (SKCV). However, the physical barriers and complex network structures which make up a city’s landscape mean that these methods are also inappropriate, largely because the travel patterns (and hence Spatial Autocorrelation (SAC)) in most urban spaces are rarely Euclidean in nature. To overcome this problem, we propose a new road distance and travel time k-fold cross-validation method, RT-KCV. We show how this outperforms the prior art in providing better estimates of the true generalisation performance to unseen data.

更新日期:2020-01-04

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug