当前位置: X-MOL 学术VLDB J. › 论文详情
Efficient query autocompletion with edit distance-based error tolerance
The VLDB Journal ( IF 1.973 ) Pub Date : 2019-12-14 , DOI: 10.1007/s00778-019-00595-4
Jianbin Qin, Chuan Xiao, Sheng Hu, Jie Zhang, Wei Wang, Yoshiharu Ishikawa, Koji Tsuda, Kunihiko Sadakane

Query autocompletion is an important feature saving users many keystrokes from typing the entire query. In this paper, we study the problem of query autocompletion that tolerates errors in users’ input using edit distance constraints. Previous approaches index data strings in a trie, and continuously maintain all the prefixes of data strings whose edit distances from the query string are within the given threshold. The major inherent drawback of these approaches is that the number of such prefixes is huge for the first few characters of the query string and is exponential in the alphabet size. This results in slow query response even if the entire query approximately matches only few prefixes. We propose a novel neighborhood generation-based method to process error-tolerant query autocompletion. Our proposed method only maintains a small set of active nodes, thus saving both space and time to process the query. We also study efficient duplicate removal, a core problem in fetching query answers, and extend our method to support top-k queries. Optimization techniques are proposed to reduce the index size. The efficiency of our method is demonstrated through extensive experiments on real datasets.
更新日期:2020-01-06

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
加州大学洛杉矶分校
上海纽约大学William Glover
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug