当前位置: X-MOL 学术VLDB J. › 论文详情
Efficient community discovery with user engagement and similarity
The VLDB Journal ( IF 2.904 ) Pub Date : 2019-10-26 , DOI: 10.1007/s00778-019-00579-4
Fan Zhang, Xuemin Lin, Ying Zhang, Lu Qin, Wenjie Zhang

Abstract

In this paper, we investigate the problem of (k,r)-core which intends to find cohesive subgraphs on social networks considering both user engagement and similarity perspectives. In particular, we adopt the popular concept of k-core to guarantee the engagement of the users (vertices) in a group (subgraph) where each vertex in a (k,r)-core connects to at least k other vertices. Meanwhile, we consider the pairwise similarity among users based on their attributes. Efficient algorithms are proposed to enumerate all maximal (k,r)-cores and find the maximum (k,r)-core, where both problems are shown to be NP-hard. Effective pruning techniques substantially reduce the search space of two algorithms. A novel (\(k\),\(k'\))-core based (\(k\),\(r\))-core size upper bound enhances the performance of the maximum (k,r)-core computation. We also devise effective search orders for two algorithms with different search priorities for vertices. Besides, we study the diversified (\(k\),\(r\))-core search problem to find l maximal (\(k\),\(r\))-cores which cover the most vertices in total. These maximal (\(k\),\(r\))-cores are distinctive and informationally rich. An efficient algorithm is proposed with a guaranteed approximation ratio. We design a tight upper bound to prune unpromising partial (\(k\),\(r\))-cores. A new search order is designed to speed up the search. Initial candidates with large size are generated to further enhance the pruning power. Comprehensive experiments on real-life data demonstrate that the maximal (k,r)-cores enable us to find interesting cohesive subgraphs, and performance of three mining algorithms is effectively improved by all the proposed techniques.

更新日期:2020-01-06

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
张健
陈芬儿
厦门大学
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug