当前位置: X-MOL 学术arXiv.cs.MA › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vehicle Platooning Impact on Drag Coefficients and Energy/Fuel Saving Implications
arXiv - CS - Multiagent Systems Pub Date : 2020-01-02 , DOI: arxiv-2001.00560
Ahmed A. Hussein and Hesham A. Rakha

In this paper, empirical data from the literature are used to develop general power models that capture the impact of a vehicle position, in a platoon of homogeneous vehicles, and the distance gap to its lead (and following) vehicle on its drag coefficient. These models are developed for light duty vehicles, buses, and heavy duty trucks. The models were fit using a constrained optimization framework to fit a general power function using either direct drag force or fuel measurements. The model is then used to extrapolate the empirical measurements to a wide range of vehicle distance gaps within a platoon. Using these models we estimate the potential fuel reduction associated with homogeneous platoons of light duty vehicles, buses, and heavy duty trucks. The results show a significant reduction in the vehicle fuel consumption when compared with those based on a constant drag coefficient assumption. Specifically, considering a minimum time gap between vehicles of $0.5 \; secs$ (which is typical considering state-of-practice communication and mechanical system latencies) running at a speed of $100 \; km/hr$, the optimum fuel reduction that is achieved is $4.5 \%$, $15.5 \%$, and $7.0 \%$ for light duty vehicle, bus, and heavy duty truck platoons, respectively. For longer time gaps, the bus and heavy duty truck platoons still produce fuel reductions in the order of $9.0 \%$ and $4.5 \%$, whereas light duty vehicles produce negligible fuel savings.

中文翻译:

车辆编队对阻力系数和能源/燃油节省的影响

在本文中,文献中的经验数据用于开发通用功率模型,该模型捕捉车辆位置、同质车辆排中的影响,以及与其领先(和跟随)车辆的距离差距对其阻力系数的影响。这些型号是为轻型车辆、公共汽车和重型卡车开发的。使用约束优化框架拟合模型,以使用直接阻力或燃料测量拟合一般功率函数。然后使用该模型将经验测量值外推到一个排内的各种车辆距离间隙。使用这些模型,我们估计了与轻型车辆、公共汽车和重型卡车的同质队列相关的潜在燃料减少量。结果表明,与基于恒定阻力系数假设的燃料消耗相比,车辆燃料消耗显着降低。具体来说,考虑到车辆之间的最小时间间隔为 0.5 美元 \;secs$(考虑到实践通信和机械系统延迟的典型情况)以 100 美元的速度运行 \; km/hr$,对于轻型车辆、公共汽车和重型卡车排,实现的最佳燃料减少分别为 $4.5\%$、$15.5\%$ 和 $7.0\%$。对于更长的时间间隔,公共汽车和重型卡车排仍然可以节省 9.0 美元和 4.5 美元的燃料,而轻型车辆的燃料节省可以忽略不计。secs$(考虑到实践通信和机械系统延迟的典型情况)以 100 美元的速度运行 \; km/hr$,对于轻型车辆、公共汽车和重型卡车排,实现的最佳燃料减少分别为 $4.5\%$、$15.5\%$ 和 $7.0\%$。对于更长的时间间隔,公共汽车和重型卡车排仍然可以节省 9.0 美元和 4.5 美元的燃料,而轻型车辆的燃料节省可以忽略不计。secs$(考虑到实践通信和机械系统延迟的典型情况)以 100 美元的速度运行 \; km/hr$,对于轻型车辆、公共汽车和重型卡车排,实现的最佳燃料减少分别为 $4.5\%$、$15.5\%$ 和 $7.0\%$。对于更长的时间间隔,公共汽车和重型卡车排仍然可以节省 9.0 美元和 4.5 美元的燃料,而轻型车辆的燃料节省可以忽略不计。
更新日期:2020-03-04
down
wechat
bug