当前位置: X-MOL 学术J. Complex. › 论文详情
Influence of the regularity of the test functions for weak convergence in numerical discretization of SPDEs
Journal of Complexity ( IF 1.338 ) Pub Date : 2019-08-12 , DOI: 10.1016/j.jco.2019.101424
Charles-Edouard Bréhier

This article investigates the role of the regularity of the test function when considering the weak error for standard spatial and temporal discretizations of SPDEs of the form dX(t)=AX(t)dt+dW(t), driven by space–time white noise. In previous results, test functions are assumed (at least) of class C2 with bounded derivatives, and the weak order is twice the strong order.

We prove that to quantify the speed of convergence, it is crucial to control some derivatives of the test functions, even if the noise is non-degenerate. First, the supremum of the weak error over all bounded continuous functions, which are bounded by 1, does not converge to 0 as the discretization parameter vanishes. Second, when considering bounded Lipschitz test functions, the weak order of convergence is divided by 2, i.e. it is not better than the strong order.

This is in contrast with the finite dimensional case, where the Euler–Maruyama discretization of elliptic SDEs dY(t)=f(Y(t))dt+dBt has weak order of convergence 1 even for bounded continuous functions.

更新日期:2020-01-04

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
张健
陈芬儿
厦门大学
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug