当前位置: X-MOL 学术J. Complex. › 论文详情
Influence of the regularity of the test functions for weak convergence in numerical discretization of SPDEs
Journal of Complexity ( IF 0.888 ) Pub Date : 2019-08-12 , DOI: 10.1016/j.jco.2019.101424
Charles-Edouard Bréhier

This article investigates the role of the regularity of the test function when considering the weak error for standard spatial and temporal discretizations of SPDEs of the form dX(t)=AX(t)dt+dW(t), driven by space–time white noise. In previous results, test functions are assumed (at least) of class C2 with bounded derivatives, and the weak order is twice the strong order. We prove that to quantify the speed of convergence, it is crucial to control some derivatives of the test functions, even if the noise is non-degenerate. First, the supremum of the weak error over all bounded continuous functions, which are bounded by 1, does not converge to 0 as the discretization parameter vanishes. Second, when considering bounded Lipschitz test functions, the weak order of convergence is divided by 2, i.e. it is not better than the strong order. This is in contrast with the finite dimensional case, where the Euler–Maruyama discretization of elliptic SDEs dY(t)=f(Y(t))dt+dBt has weak order of convergence 1 even for bounded continuous functions.
更新日期:2020-01-04

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug