当前位置: X-MOL 学术J. Complex. › 论文详情
Optimal learning rates for distribution regression
Journal of Complexity ( IF 0.888 ) Pub Date : 2019-08-20 , DOI: 10.1016/j.jco.2019.101426
Zhiying Fang; Zheng-Chu Guo; Ding-Xuan Zhou

We study a learning algorithm for distribution regression with regularized least squares. This algorithm, which contains two stages of sampling, aims at regressing from distributions to real valued outputs. The first stage sample consists of distributions and the second stage sample is obtained from these distributions. To extract information from samples, we embed distributions to a reproducing kernel Hilbert space (RKHS) and use the second stage sample to form the regressor by a tool of mean embedding. We show error bounds in the L2-norm and prove that the regressor is a good approximation to the regression function. We derive a learning rate which is optimal in the setting of standard least squares regression and improve the existing work. Our analysis is achieved by using a novel second order decomposition to bound operator norms.
更新日期:2020-01-04

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug