当前位置: X-MOL 学术J. South Am. Earth Sci. › 论文详情
Eruptive chronology of the Acoculco caldera complex – A resurgent caldera in the eastern Trans-Mexican Volcanic Belt (México)
Journal of South American Earth Sciences ( IF 1.704 ) Pub Date : 2019-11-28 , DOI: 10.1016/j.jsames.2019.102412
Denis Ramón Avellán; José Luis Macías; Paul W. Layer; Giovanni Sosa-Ceballos; Martha Gabriela Gómez-Vasconcelos; Guillermo Cisneros-Máximo; Juan Manuel Sánchez-Núñez; Joan Martí; Felipe García-Tenorio; Héctor López-Loera; Antonio Pola; Jeff Benowitz

The Acoculco caldera complex (ACC) is located in the eastern part of the Trans-Mexican Volcanic Belt in the northern part of the State of Puebla. The complex sits at the intersection of two regional fault systems with NE-SW and NW-SE orientations. The ACC was built atop Cretaceous limestones, the Zacatán basaltic plateau of unknown age, early Miocene domes (~12.7–10.98 Ma), and Pliocene lava domes (~3.9–3 Ma). Detailed field mapping and stratigraphy studies complemented by 40Ar/39Ar and 14C dating allowed the division of the ACC volcanic succession into 30 volcanic units. Based on the new results and previous studies, the ACC eruptive chronology was grouped in four eruptive phases: syn-caldera, early post-caldera, late post-caldera, and extra-caldera. Inception of the ACC volcanism began around 2.7 Ma with the dispersion of an andesitic ignimbrite followed by the collapse of the magma chamber roof as attested by the presence of a lithic breccia in isolated parts of the caldera rim. The collapse produced a 18 × 16 km caldera depression which was partly filled by the ignimbrite (total volume of ~127 km3) followed by the establishment of an intracaldera lake of unknown total extension. Early post-caldera collapse activity (2.6–2.1 Ma) was restricted within the caldera producing 27 km3 of lava flows and domes dominantly of basaltic trachyandesite to basaltic composition. Late post-caldera collapse activity (2.0-<0.016 Ma) migrated dominantly to the caldera rim and periphery emplacing 90 km3 of magma as rhyolitic domes, lava flows, scoria cones, and two younger ignimbrites. The 1.2 Ma Encimadas ignimbrite (26 km3) was vented through the eastern margin of the caldera and dispersed to the northeast, and the 0.6–0.8 Ma Tecoloquillo ignimbrite and dome (11 km3) erupted from the southwestern margin of the caldera. The most recent eruption of this phase was vented close to the southeastern caldera rim producing the Cuatzitzingo (<16,710 ± 50 years BP) scoria cone. Extra-caldera activity (2.4–0.19 Ma) of the Apan–Tezontepec volcanic field produced scoria cones and lava flows of basaltic trachyandesite to basaltic andesite composition that are interbedded with the products of the caldera complex.

Aeromagnetic data further constrains the edge of the caldera rim and is consistent with the presence of at least four intrusive bodies at depths of >1 km hosted in the Cretaceous limestones. These bodies might represent a series of horizontal mafic intrusions located at different depths that provide the energy that maintains the Acoculco geothermal system active.

更新日期:2020-01-04

 

全部期刊列表>>
施普林格自然
最近合集,配们化学
欢迎访问IOP中国网站
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
复旦大学
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
刘冬生
试剂库存
down
wechat
bug