当前位置: X-MOL 学术Ecol. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluating the performance of conservation practices under climate change scenarios in the Miyun Reservoir Watershed, China
Ecological Engineering ( IF 3.8 ) Pub Date : 2020-01-01 , DOI: 10.1016/j.ecoleng.2019.105700
Jiali Qiu , Zhenyao Shen , Xiaoshu Hou , Hui Xie , Guoyong Leng

Abstract Climate change is one of the major challenges in watershed management systems. Rising air temperatures, increasing precipitation in winter, and decreasing precipitation in summer as well as increases in extreme weather events have increased flooding and droughts and further affected water quality in the Miyun Reservoir Watershed (MRW). This study used the Soil and Water Assessment Tool (SWAT) model with five downscaled general circulation models (GCMs) to quantify the impact of climate change on hydrology, soil erosion, nutrient cycling, and the performance of Best Management Practices (BMPs) at watershed scale, driven by RCPs 2.6, 4.5, and 8.5. Compared with the baseline scenario, the results indicated that climate variability, especially precipitation and temperature, had great effects on surface runoff, sediment yields, and nutrient losses and further significantly affected BMP efficiency, although the magnitudes of change differed among the RCPs. Monthly sediment and nutrient loads increased substantially in all climate change scenarios, especially in flood season, due to the increase in precipitation intensity. Although BMPs were identified to be not appreciably effective in controlling water balance, they were effective in reducing sediment and nutrient losses. Based on this case, a simulation-optimization framework was applied to develop future watershed management strategies with BMP configurations because of their climate adaptation benefits, water improvement targets, and economical cost. The results indicated that the discrepancy among different climate scenarios was reflected by the number and types of BMPs and their spatial distributions, especially structural BMPs. This study suggests that the increasing frequency of rainfall events may decrease the efficiency of BMPs in the MRW, and watershed management should be adjusted according to changing climate in the future.
更新日期:2020-01-01
down
wechat
bug