当前位置: X-MOL 学术Pattern Recogn. › 论文详情
Discovering influential factors in variational autoencoders
Pattern Recognition ( IF 5.898 ) Pub Date : 2019-12-15 , DOI: 10.1016/j.patcog.2019.107166
Shiqi Liu; Jingxin Liu; Qian Zhao; Xiangyong Cao; Huibin Li; Deyu Meng; Hongying Meng; Sheng Liu

In the field of machine learning, it is still a critical issue to identify and supervise the learned representation without manually intervening or intuition assistance to extract useful knowledge or serve for the downstream tasks. In this work, we focus on supervising the influential factors extracted by the variational autoencoder (VAE). The VAE is proposed to learn independent low dimension representation while facing the problem that sometimes pre-set factors are ignored. We argue that the mutual information of the input and each learned factor of the representation plays a necessary indicator of discovering the influential factors. We find the VAE objective inclines to induce mutual information sparsity in factor dimension over the data intrinsic dimension and therefore result in some non-influential factors whose function on data reconstruction could be ignored. We show mutual information also influences the lower bound of VAE’s reconstruction error and downstream classification task. To make such indicator applicable, we design an algorithm for calculating the mutual information for VAE and prove its consistency. Experimental results on MNIST, CelebA and DEAP datasets show that mutual information can help determine influential factors, of which some are interpretable and can be used to further generation and classification tasks, and help discover the variant that connects with emotion on DEAP dataset.
更新日期:2020-01-04

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug