当前位置: X-MOL 学术Pattern Recogn. › 论文详情
UNIC: A fast nonparametric clustering
Pattern Recognition ( IF 5.898 ) Pub Date : 2019-11-19 , DOI: 10.1016/j.patcog.2019.107117
Nadiia Leopold; Oliver Rose

Clustering is among the tools for exploring, analyzing, and deriving information from data. In the case of large data sets, the real burden to the application of clustering algorithms can be their complexity and demand of control parameters. We present a new fast nonparametric clustering algorithm, UNIC, to address these challenges. To identify clusters, the algorithm evaluates the distances between selected points and other points in the set. While assessing these distances, it employs methods of robust statistics to identify the cluster borders. The performance of the proposed algorithm is assessed in an experimental study and compared with several existing clustering methods over a variety of benchmark data sets.
更新日期:2020-01-04

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug