当前位置: X-MOL 学术Pattern Recogn. › 论文详情
Correlation classifiers based on data perturbation: New formulations and algorithms
Pattern Recognition ( IF 7.196 ) Pub Date : 2019-11-11 , DOI: 10.1016/j.patcog.2019.107106
Zhizheng Liang; Xuewen Chen; Lei Zhang; Jin Liu; Yong Zhou

This paper develops a novel framework for a family of correlation classifiers that are reconstructed from uncertain convex programs under data perturbation. Under this framework, correlation classifiers are exploited from the pessimistic viewpoint under possible perturbation of data, and the max-min optimization problem is formulated by simplifying the original model in terms of adaptive uncertainty regions. The proposed model can be formulated as a minimization problem under proper conditions. The proximal majorization-minimization optimization (PMMO) based on Bregman divergences is devised to solve the proposed model that may be nonconvex or nonsmooth. It is found that using PMMO to solve the proposed model can exploit the convergence rate of the solution sequence in the nonconvex case. In the case of specific functions we can use the accelerated versions of first-order methods to solve the proposed model with convexity in order to make them have fast convergence rates in terms of the objective function. Extensive experiments on some data sets are conducted to demonstrate the feasibility and validity of the proposed model.

更新日期:2020-01-04

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug