当前位置: X-MOL 学术Pattern Recogn. › 论文详情
AI-GAN: Asynchronous interactive generative adversarial network for single image rain removal
Pattern Recognition ( IF 5.898 ) Pub Date : 2019-12-06 , DOI: 10.1016/j.patcog.2019.107143
Xin Jin; Zhibo Chen; Weiping Li

Single image rain removal plays an important role in numerous multimedia applications. Existing algorithms usually tackle the deraining problem by the way of signal removal, which lead to over-smoothness and generate unexpected artifacts in de-rained images. This paper addresses the deraining problem from a completely different perspective of feature-wise disentanglement, and introduces the interactions and constraints between two disentangled latent spaces. Specifically, we propose an Asynchronous Interactive Generative Adversarial Network (AI-GAN) to progressively disentangle the rainy image into background and rain spaces in feature level through a two-branch structure. Each branch employs a two-stage synthesis strategy and interacts asynchronously by exchanging feed-forward information and sharing feedback gradients, achieving complementary adversarial optimization. This ‘adversarial’ is not only the ‘adversarial’ between the generator and the discriminator, but also means that the two generators are entangled, and interact with each other in the optimization process. Extensive experimental results demonstrate that AI-GAN outperforms state-of-the-art deraining methods and benefits various typical multimedia applications such as Image/Video Coding, Action Recognition, and Person Re-identification.
更新日期:2020-01-04

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug