当前位置: X-MOL 学术J. Phys. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tensile Strain-Controlled Photogenerated Carrier Dynamics at the van der Waals Heterostructure Interface.
The Journal of Physical Chemistry Letters ( IF 5.7 ) Pub Date : 2020-01-08 , DOI: 10.1021/acs.jpclett.9b03534
Yunzhe Tian 1 , Qijing Zheng 1 , Jin Zhao 1, 2, 3
Affiliation  

Customizing the photogenerated carrier dynamics would make the two-dimensional (2D) materials highly adaptable to various application scenarios. On the basis of time-domain ab initio nonadiabatic molecular dynamics simulation, we find that 4% tensile strain can suppress the electron transfer at the van der Waals heterostructure MoS2/WS2 interface. Our analysis shows that after the electron-hole pair is excited in the K valley in WS2 direct electron transfer from WS2@K to MoS2@K is very difficult because of the weak interlayer coupling in the K valley, and thus, it happens through the T valley as WS2@K-MoS2@T-MoS2@K. When the tensile strain is applied, the energy of WS2@K is decreased, resulting in the suppression of electron transfer. Our study suggests that tuning of the interlayer charge-transfer dynamics by external strain is possible, which provides valuable insights into the functional design of photonic devices based on 2D materials.

中文翻译:

范德华异质结构界面处的拉伸应变控制光生载流子动力学。

定制光生载流子动力学将使二维(2D)材料高度适应各种应用场景。在时域从头算起非绝热分子动力学模拟的基础上,我们发现4%的拉伸应变可以抑制范德华兹异质结构MoS2 / WS2界面上的电子转移。我们的分析表明,在WS2的K谷中激发电子-空穴对之后,由于K谷中的层间耦合较弱,因此直接电子从WS2 @ K到MoS2 @ K的转移非常困难,因此,通过T谷为WS2 @ K-MoS2 @ T-MoS2 @ K。当施加拉伸应变时,WS2 @ K的能量降低,从而抑制了电子转移。我们的研究表明,可以通过外部应变来调节层间电荷转移动力学,
更新日期:2020-01-09
down
wechat
bug