当前位置: X-MOL 学术Transp Porous Media › 论文详情
Computational Analysis of Interfacial Dynamics in Angled Hele-Shaw Cells: Instability Regimes
Transport in Porous Media ( IF 1.997 ) Pub Date : 2019-12-07 , DOI: 10.1007/s11242-019-01371-2
Daihui Lu, Federico Municchi, Ivan C. Christov

Abstract We present a theoretical and numerical study on the (in)stability of the interface between two immiscible liquids, i.e., viscous fingering, in angled Hele-Shaw cells across a range of capillary numbers (Ca). We consider two types of angled Hele-Shaw cells: diverging cells with a positive depth gradient and converging cells with a negative depth gradient, and compare those against parallel cells without a depth gradient. A modified linear stability analysis is employed to derive an expression for the growth rate of perturbations on the interface and for the critical capillary number (\(Ca_c\)) for such tapered Hele-Shaw cells with small gap gradients. Based on this new expression for \(Ca_c\), a three-regime theory is formulated to describe the interface (in)stability: (i) in Regime I, the growth rate is always negative, thus the interface is stable; (ii) in Regime II, the growth rate remains zero (parallel cells), changes from negative to positive (converging cells), or from positive to negative (diverging cells), thus the interface (in)stability possibly changes type at some location in the cell; (iii) in Regime III, the growth rate is always positive, thus the interface is unstable. We conduct three-dimensional direct numerical simulations of the full Navier–Stokes equations, using a phase field method to enforce surface tension at the interface, to verify the theory and explore the effect of depth gradient on the interface (in)stability. We demonstrate that the depth gradient has only a slight influence in Regime I, and its effect is most pronounced in Regime III. Finally, we provide a critical discussion of the stability diagram derived from theoretical considerations versus the one obtained from direct numerical simulations.
更新日期:2020-01-04

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug