当前位置: X-MOL 学术Mach. Learn. › 论文详情
Covariance-based dissimilarity measures applied to clustering wide-sense stationary ergodic processes
Machine Learning ( IF 2.809 ) Pub Date : 2019-06-26 , DOI: 10.1007/s10994-019-05818-x
Qidi Peng, Nan Rao, Ran Zhao

We introduce a new unsupervised learning problem: clustering wide-sense stationary ergodic stochastic processes. A covariance-based dissimilarity measure together with asymptotically consistent algorithms is designed for clustering offline and online datasets, respectively. We also suggest a formal criterion on the efficiency of dissimilarity measures, and discuss an approach to improve the efficiency of our clustering algorithms, when they are applied to cluster particular type of processes, such as self-similar processes with wide-sense stationary ergodic increments. Clustering synthetic data and real-world data are provided as examples of applications.
更新日期:2020-01-04

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug