当前位置: X-MOL 学术Ann. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Membrane Deformation of Endothelial Surface Layer Interspersed with Syndecan-4: A Molecular Dynamics Study
Annals of Biomedical Engineering ( IF 3.8 ) Pub Date : 2019-09-13 , DOI: 10.1007/s10439-019-02353-7
Xi Zhuo Jiang , Liwei Guo , Kai H. Luo , Yiannis Ventikos

Abstract

The lipid membrane of endothelial cells plays a pivotal role in maintaining normal circulatory system functions. To investigate the response of the endothelial cell membrane to changes in vascular conditions, an atomistic model of the lipid membrane interspersed with Syndecan-4 core protein was established based on experimental observations and a series of molecular dynamics simulations were undertaken. The results show that flow results in continuous deformation of the lipid membrane, and the degree of membrane deformation is not in monotonic relationship with the environmental changes (either the changes in blood velocity or the alteration of the core protein configuration). An explanation for such non-monotonic relationship is provided, which agrees with previous experimental results. The elevation of the lipid membrane surface around the core protein of the endothelial glycocalyx was also observed, which can be mainly attributed to the Coulombic interactions between the biomolecules therein. The present study demonstrates that the blood flow can deform the lipid membrane directly via the interactions between water molecules and lipid membrane atoms thereby affecting mechanosensing; it also presents an additional force transmission pathway from the flow to the lipid membrane via the glycocalyx core protein, which complements previous mechanotransduction hypothesis.



中文翻译:

内皮表面层与Syndecan-4互穿的膜变形:分子动力学研究。

摘要

内皮细胞的脂质膜在维持正常的循环系统功能中起关键作用。为了研究内皮细胞膜对血管状况变化的反应,在实验观察的基础上建立了穿插有Syndecan-4核心蛋白的脂质膜的原子模型,并进行了一系列分子动力学模拟。结果表明,流动导致脂质膜的连续变形,并且膜变形的程度与环境变化(血液速度的变化或核心蛋白构型的改变)不具有单调关系。提供了这种非单调关系的解释,与先前的实验结果相符。还观察到内皮糖萼核心蛋白周围脂质膜表面的升高,这主要归因于其中的生物分子之间的库仑相互作用。本研究表明血流可以直接使脂质膜变形通过水分子和脂质膜原子之间的相互作用,从而影响机械传感;它还通过糖萼核心蛋白从血流到脂膜提供了另外的力传递途径,这补充了以前的机械转导假说。

更新日期:2020-01-04
down
wechat
bug