当前位置: X-MOL 学术Int. J. Gen. Syst. › 论文详情
An expectation operator for belief functions in the Dempster–Shafer theory* * Presented at the 11th Workshop on Uncertainty Processing (WUPES'18), Třeboň, Czech Republic, June 6–9, 2018.View all notes
International Journal of General Systems ( IF 2.259 ) Pub Date : 2019-09-02 , DOI: 10.1080/03081079.2019.1658756
Prakash P. Shenoy

The main contribution of this paper is a new definition of expected value of belief functions in the Dempster–Shafer (D–S) theory of evidence. Our definition shares many of the properties of the expectation operator in probability theory. Also, for Bayesian belief functions, our definition provides the same expected value as the probabilistic expectation operator. A traditional method of computing expected of real-valued functions is to first transform a D–S belief function to a corresponding probability mass function, and then use the expectation operator for probability mass functions. Transforming a belief function to a probability function involves loss of information. Our expectation operator works directly with D–S belief functions. Another definition is using Choquet integration, which assumes belief functions are credal sets, i.e. convex sets of probability mass functions. Credal sets semantics are incompatible with Dempster's combination rule, the center-piece of the D–S theory. In general, our definition provides different expected values than, e.g. if we use probabilistic expectation using the pignistic transform or the plausibility transform of a belief function. Using our definition of expectation, we provide new definitions of variance, covariance, correlation, and other higher moments and describe their properties.
更新日期:2020-01-21

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug