当前位置: X-MOL 学术Int. Math. Res. Notices › 论文详情
Modular finite W-algebras
International Mathematics Research Notices ( IF 1.452 ) Pub Date : 2018-01-16 , DOI: 10.1093/imrn/rnx295
Goodwin S, Topley L.

Let ${\mathbb{k}}$ be an algebraically closed field of characteristic p > 0 and let G be a connected reductive algebraic group over ${\mathbb{k}}$. Under some standard hypothesis on G, we give a direct approach to the finite W-algebra $U(\mathfrak{g},e)$ associated to a nilpotent element $e \in \mathfrak{g} = \textrm{Lie}\ G$. We prove a PBW theorem and deduce a number of consequences, then move on to define and study the p-centre of $U(\mathfrak{g},e)$, which allows us to define reduced finite W-algebras $U_{\eta}(\mathfrak{g},e)$ and we verify that they coincide with those previously appearing in the work of Premet. Finally, we prove a modular version of Skryabin’s equivalence of categories, generalizing recent work of the second author.
更新日期:2020-01-04

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug