当前位置: X-MOL 学术Environ. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmonic nanoparticles for environmental analysis
Environmental Chemistry Letters ( IF 15.7 ) Pub Date : 2020-01-03 , DOI: 10.1007/s10311-019-00962-1
Karol Kołątaj , Jan Krajczewski , Andrzej Kudelski

Gold and silver nanoparticles have unique optical properties. For instance, the intense colour of nanoparticle suspensions results from the excitation of a collective oscillation of surface conduction electrons, named surface plasmons. This excitation is done using an electromagnetic radiation that interacts with nanoparticles having a negative real and small positive imaginary dielectric constant, such as nanoparticles of gold or silver. The plasmonic optical properties of metal nanostructures are dependent on their shape and size, the dielectric properties of the metal and the surroundings and on the possible electromagnetic coupling with the localized surface plasmons in nearby other plasmonic objects. The other important consequence of the excitation of surface plasmons is a local significant enhancement of the electromagnetic field at some places of the illuminated nanoparticles. Specific plasmonic properties of gold and silver nanoparticles have allowed the development of many sensors for chemical analysis, including sensors dedicated for environmental analysis. Some of these sensors are so sensitive that recording of the reliable analytical signal of a single molecule is possible. Here, we review analytical techniques based on plasmonic properties of metallic nanoparticles for environmental analysis. We present the theory and mechanism of interaction of the electromagnetic radiation with the plasmonic nanoparticles. We detail analytical techniques including methods utilizing local enhancement of the intensity of the electromagnetic field induced by plasmons, and hence increase in the efficiency of some optical processes in the proximity of the plasmonic nanoparticles. Those techniques are surface-enhanced Raman scattering, surface-enhanced infrared absorption and metal-enhanced fluorescence and methods based on the change in the optical properties of plasmonic nanoparticles caused by the analyte-induced aggregation or by analyte-influenced growth or etching of plasmonic nanostructures. Environmental compounds include heavy metal cations, metallo-organic compounds, polycyclic aromatic hydrocarbons, pesticides, nitrite ions, bacterial cells and bacterial pathogens.

中文翻译:

用于环境分析的等离子纳米颗粒

金和银纳米粒子具有独特的光学特性。例如,纳米粒子悬浮液的强烈颜色是由表面传导电子的集体振荡(称为表面等离激元)的激发而产生的。使用与具有负的实数介电常数和正的虚数介电常数较小的纳米粒子(例如金或银的纳米粒子)相互作用的电磁辐射进行激发。金属纳米结构的等离激元光学特性取决于其形状和大小,金属和周围环境的介电特性,以及与附近其他等离激元物体中的局部表面等离激元可能的电磁耦合。激发表面等离子体激元的另一个重要结果是,在被照射的纳米颗粒的某些位置上电磁场局部显着增强。金和银纳米粒子的特定等离激元性质已允许开发许多用于化学分析的传感器,包括专用于环境分析的传感器。这些传感器中的一些非常灵敏,因此可以记录单个分子的可靠分析信号。在这里,我们回顾基于金属纳米粒子的等离子特性的分析技术,用于环境分析。我们介绍了电磁辐射与等离子体纳米颗粒相互作用的理论和机理。我们详细介绍了分析技术,包括利用局部增强等离子体激元感应的电磁场强度的方法,从而提高等离子体激元纳米粒子附近某些光学过程的效率。这些技术是表面增强的拉曼散射,表面增强的红外吸收和金属增强的荧光,以及基于由分析物诱导的聚集或分析物影响的等离子纳米结构的生长或蚀刻引起的等离子纳米颗粒的光学性质变化的方法。 。环境化合物包括重金属阳离子,金属有机化合物,多环芳烃,农药,亚硝酸根离子,细菌细胞和细菌病原体。因此提高了等离子体纳米颗粒附近的某些光学过程的效率。这些技术是表面增强的拉曼散射,表面增强的红外吸收和金属增强的荧光,以及基于由分析物诱导的聚集或分析物影响的等离子纳米结构的生长或蚀刻引起的等离子纳米颗粒的光学性质变化的方法。 。环境化合物包括重金属阳离子,金属有机化合物,多环芳烃,农药,亚硝酸根离子,细菌细胞和细菌病原体。因此提高了等离子体纳米颗粒附近的某些光学过程的效率。这些技术是表面增强的拉曼散射,表面增强的红外吸收和金属增强的荧光,以及基于由分析物诱导的聚集或分析物影响的等离子纳米结构的生长或蚀刻引起的等离子纳米颗粒的光学性质变化的方法。 。环境化合物包括重金属阳离子,金属有机化合物,多环芳烃,农药,亚硝酸根离子,细菌细胞和细菌病原体。表面增强的红外吸收和金属增强的荧光以及基于由分析物诱导的聚集或分析物影响的等离子体纳米结构的生长或蚀刻引起的等离子体纳米颗粒光学特性变化的方法。环境化合物包括重金属阳离子,金属有机化合物,多环芳烃,农药,亚硝酸根离子,细菌细胞和细菌病原体。表面增强的红外吸收和金属增强的荧光,以及基于由分析物诱导的聚集或分析物影响的等离子体纳米结构的生长或蚀刻引起的等离子体纳米颗粒光学特性变化的方法。环境化合物包括重金属阳离子,金属有机化合物,多环芳烃,农药,亚硝酸根离子,细菌细胞和细菌病原体。
更新日期:2020-01-04
down
wechat
bug