当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Outstanding comprehensive performance versus facile synthesis: Constructing core and shell-interchangeable nanocomposites as microwave absorber.
Journal of Colloid and Interface Science ( IF 9.9 ) Pub Date : 2020-01-03 , DOI: 10.1016/j.jcis.2020.01.002
Zihan Li 1 , Erqi Yang 2 , Xiaosi Qi 3 , Ren Xie 1 , Tao Jing 1 , Shuijie Qin 1 , Chaoyong Deng 4 , Wei Zhong 5
Affiliation  

It is still a great challenge to develop high-performance microwave absorption materials (MAMs). Herein, we first proved the excellent synergistic effect of Fe3O4/MoS2 heterostructure based on the theoretical calculations. To effectively utilize the synergistic effect and morphology, core and shell-interchangeable Fe3O4@MoS2 and MoS2@Fe3O4 nanocomposites (NCs) were elaborately constructed. By controlling the hydrothermal temperature, different MoS2 morphologies and contents of Fe3O4@MoS2 NCs were produced, which simultaneously displayed the optimal reflection loss (RL) values (~-50 dB), broad absorption bandwidth (⩾5.0GHz) and high chemical stabilities. With the synthesis temperature increasing from 170 °C to 200 °C, their outstanding microwave absorption (MA) capabilities moved towards the high frequency region and thin matching thickness. Impressively, the Fe3O4@MoS2 obtained at 200 °C presented a minimum RL value of -50.75 dB with the thickness of 2.90 mm and an absorption bandwidth of 5.0 GHz with the thickness of 1.71 mm, and the excellent MA capabilities (RL values <-30 dB) with the low matching thicknesses (<2 mm) could be observed in the frequency range of X and Ku bands. Moreover, compared to the reverse structure MoS2@Fe3O4, the core@shell structure Fe3O4@MoS2 exhibited evidently superior MA comprehensive properties in terms of low optimal RL value, broad absorption bandwidth and high chemical stability, which could be ascribed to the improved impedance matching and microwave attenuation characteristics. Generally, the proposed flower-like core@shell structure Fe3O4@MoS2 NCs presented very extraordinary MA comprehensive properties, which were very attractive candidates for high-performance MAMs.

中文翻译:

出色的综合性能与简便的合成方法:构建核和壳可互换的纳米复合材料作为微波吸收剂。

开发高性能微波吸收材料(MAM)仍然是一个巨大的挑战。在此,我们首先基于理论计算证明了Fe3O4 / MoS2异质结构的优异协同作用。为了有效利用协同效应和形态,精心构建了核和壳可互换的Fe3O4 @ MoS2和MoS2 @ Fe3O4纳米复合材料。通过控制水热温度,产生了不同的MoS2形态和Fe3O4 @ MoS2 NCs的含量,同时显示了最佳的反射损耗(RL)值(〜-50 dB),宽吸收带宽(⩾5.0GHz)和高化学稳定性。随着合成温度从170°C升高到200°C,它们出色的微波吸收(MA)能力朝着高频区域和薄匹配厚度发展。令人印象深刻的是,在200°C下获得的Fe3O4 @ MoS2的最小RL值为-50.75 dB,厚度为2.90 mm,吸收带宽为5.0 GHz,厚度为1.71 mm,并且具有出色的MA性能(RL值<-在X和Ku频段的频率范围内可以观察到30 dB)的低匹配厚度(<2 mm)。此外,与反向结构MoS2 @ Fe3O4相比,核壳结构Fe3O4 @ MoS2在低最佳RL值,宽吸收带宽和高化学稳定性方面表现出明显优越的MA综合性能,这可以归因于改进的阻抗匹配和微波衰减特性。通常,拟议的花状核@壳结构Fe3O4 @ MoS2 NCs具有非常出色的MA综合性能,
更新日期:2020-01-04
down
wechat
bug