当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxygen functionalized porous Activated biocarbons with high surface Area derived from grape marc for enhanced capture of CO2 at elevated-pressure
Carbon ( IF 10.9 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.carbon.2020.01.008
Intan S. Ismail , Gurwinder Singh , Paul Smith , Sungho Kim , Jae-Hun Yang , Stalin Joseph , Suzana Yusup , Mandeep Singh , Vipul Bansal , Siddulu N. Talapaneni , Ajayan Vinu

Abstract This research demonstrates the conversion of grape marc into highly carbonaceous and oxygen functionalized porous activated biocarbons (PABs) with a high specific area for CO2 capture. The materials are synthesized using KOH activation at 800 °C and show a high content of micropores and high specific surface areas which can be easily manipulated by varying the amount of KOH. The optimized material PAB3 obtained using KOH/grape marc biochar ratio of 3 displays the highest specific surface area (2473 m2 g−1), high micropore volume (0.72 cm3 g−1) and a pore diameter of 0.74 nm. Owing to its highly developed porosity and excellent textural parameters, PAB3 exhibits a high CO2 adsorption of 6.2 mmol g−1 at 0 °C/1 bar and 26.8 mmol g−1 at 0 °C/30 bar. It is often considered challenging to synthesize a CO2 adsorbent with all-round performance for CO2 capture under diverse conditions of temperature and pressure. The optimized material PAB3 is also found to be thermally stable which when coupled with its superior CO2 capture performance presents a promising candidature in the field of carbon capture. Furthermore, the excellent features of the synthesized material suggest that these materials could be extended to several other adsorption related fields.

中文翻译:

来自葡萄渣的具有高表面积的氧功能化多孔活性生物碳,用于在高压下增强 CO2 的捕获

摘要 本研究表明,葡萄渣可转化为高碳和氧功能化的多孔活性生物碳 (PAB),具有较高的 CO2 捕获比表面积。这些材料是在 800 °C 下使用 KOH 活化合成的,并显示出高含量的微孔和高比表面积,可以通过改变 KOH 的量轻松控制。使用 KOH/葡萄渣 biochar 比率为 3 获得的优化材料 PAB3 显示出最高的比表面积 (2473 m2 g-1)、高微孔体积 (0.72 cm3 g-1) 和 0.74 nm 的孔径。由于其高度发达的孔隙率和优异的结构参数,PAB3 在 0 °C/1 bar 下表现出 6.2 mmol g-1 和 26.8 mmol g-1 在 0 °C/30 bar 下的高 CO2 吸附。在不同的温度和压力条件下合成具有全面捕获 CO2 性能的 CO2 吸附剂通常被认为具有挑战性。还发现优化的材料 PAB3 具有热稳定性,再加上其卓越的 CO2 捕获性能,在碳捕获领域具有广阔的前景。此外,合成材料的优异特性表明这些材料可以扩展到其他几个与吸附相关的领域。
更新日期:2020-04-01
down
wechat
bug