当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solution-based Heteroepitaxial Growth of Stable Mixed Cation/Anion Hybrid Perovskite Thin Film under Ambient Condition via a Scalable Crystal Engineering Approach
Nano Energy ( IF 17.6 ) Pub Date : 2020-01-03 , DOI: 10.1016/j.nanoen.2019.104441
Narges Yaghoobi Nia , Fabrizio Giordano , Mahmoud Zendehdel , Lucio Cinà , Alessandro Lorenzo Palma , Pier Gianni Medaglia , Shaik Mohammed Zakeeruddin , Michael Grätzel , Aldo Di Carlo

The performance of perovskite solar cells is under direct control of the perovskite film quality and controlling the crystalinity and orientation of solution-processed perovskite film is a fundamental challenge. In this study, we present a scalable fabrication process for heteroepitaxial growth of mixed-cation hybrid perovskites (FA1-x-yMAxCsy)Pb(I1-xBrx)3 in ambient atmospheric condition by using a Crystal Engineering (CE) approach. Smooth and mesoporous thin film of pure crystalline intermediate phase of PbX2.2DMSO is formed by deposition of supersaturated lead/cesium halides solution. Kinetically fast perovskite nucleation is achieved by rapid intercalation of formamidinium iodide (FAI) and methylammonium bromide (MABr) into the intermediate layer trough solvent assisted SN1 ligand exchange. Finally, heteroepitaxially perovskite growth is accomplished via Volmer−Weber crystal growth mechanism. All the layers are deposited under atmospheric condition (relative humidity (RH) 50-75%) with high reproducibility for various device and module dimensions. In particular, perovskite solar modules (Pmax ∼550 mW) are successfully fabricated by blade coating under atmospheric condition. The CE approach remarkably improves the device performance by reaching a power conversion efficiency of 18.4 % for small area (0.1 cm2), 16.5 % on larger area (1 cm2) devices, and 12.7 % and 11.6 % for blade-coated modules with an active area of 17 and 50 cm2, respectively. Non-encapsulated triple cation solar cells and modules show promising stability under atmospheric shelf life and light soaking conditions.



中文翻译:

通过可扩展的晶体工程方法在环境条件下稳定的阳离子/阴离子杂化钙钛矿混合薄膜的基于溶液的异质外延生长

钙钛矿太阳能电池的性能受钙钛矿膜质量的直接控制,控制溶液加工的钙钛矿膜的结晶度和取向是一项基本挑战。在这项研究中,我们提出了一种可扩展的制造工艺,用于通过使用晶体工程(CE )在环境大气条件下混合阳离子杂化钙钛矿(FA 1-xy MA x Cs y)Pb(I 1-x Br x3的异质外延生长)方法。PbX 2纯结晶中间相的光滑介孔薄膜.2DMSO是通过沉积过饱和的铅/铯铯溶液形成的。动力学上快速的钙钛矿成核是通过将碘化甲酰胺(FAI)和甲基溴化铵(MABr)快速插入中间层通过溶剂辅助的S N 1配体交换而实现的。最后,通过Volmer-Weber晶体生长机制完成了异质外延钙钛矿的生长。所有层均在大气条件(相对湿度(RH)50-75%)下沉积,对于各种器件和模块尺寸均具有很高的重现性。特别是,钙钛矿型太阳能组件(Pmax〜550 mW)是通过在大气条件下进行叶片涂覆成功制造的。CE方法通过在小面积(0.1厘米)处达到18.4%的功率转换效率,显着提高了设备​​性能。2),在较大面积(1 cm 2)的设备上为16.5%,对于有效面积分别为17和50 cm 2的刀片式模块,分别为12.7%和11.6%。未封装的三重阳离子太阳能电池和组件在大气保存期限和光浸泡条件下显示出有希望的稳定性。

更新日期:2020-01-04
down
wechat
bug