当前位置: X-MOL 学术Br. J. Sports Med. › 论文详情
Modulation of cortical and subcortical brain areas at low and high exercise intensities
British Journal of Sports Medicine ( IF 11.645 ) Pub Date : 2020-01-01 , DOI: 10.1136/bjsports-2018-100295
Eduardo Bodnariuc Fontes; Henrique Bortolotti; Kell Grandjean da Costa; Brunno Machado de Campos; Gabriela K Castanho; Rodrigo Hohl; Timothy Noakes; Li Li Min

Introduction The brain plays a key role in the perceptual regulation of exercise, yet neuroimaging techniques have only demonstrated superficial brain areas responses during exercise, and little is known about the modulation of the deeper brain areas at different intensities. Objectives/methods Using a specially designed functional MRI (fMRI) cycling ergometer, we have determined the sequence in which the cortical and subcortical brain regions are modulated at low and high ratings perceived exertion (RPE) during an incremental exercise protocol. Results Additional to the activation of the classical motor control regions (motor, somatosensory, premotor and supplementary motor cortices and cerebellum), we found the activation of the regions associated with autonomic regulation (ie, insular cortex) (ie, positive blood-oxygen-level-dependent (BOLD) signal) during exercise. Also, we showed reduced activation (negative BOLD signal) of cognitive-related areas (prefrontal cortex), an effect that increased during exercise at a higher perceived intensity (RPE 13–17 on Borg Scale). The motor cortex remained active throughout the exercise protocol whereas the cerebellum was activated only at low intensity (RPE 6–12), not at high intensity (RPE 13–17). Conclusions These findings describe the sequence in which different brain areas become activated or deactivated during exercise of increasing intensity, including subcortical areas measured with fMRI analysis.
更新日期:2020-01-04

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug