当前位置: X-MOL 学术J. Biol. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational analysis of viable parameter regions in models of synthetic biological systems.
Journal of Biological Engineering ( IF 5.6 ) Pub Date : 2019-09-18 , DOI: 10.1186/s13036-019-0205-0
Žiga Pušnik 1 , Miha Mraz 1 , Nikolaj Zimic 1 , Miha Moškon 1
Affiliation  

Background Gene regulatory networks with different topological and/or dynamical properties might exhibit similar behavior. System that is less perceptive for the perturbations of its internal and external factors should be preferred. Methods for sensitivity and robustness assessment have already been developed and can be roughly divided into local and global approaches. Local methods focus only on the local area around nominal parameter values. This can be problematic when parameters exhibits the desired behavior over a large range of parameter perturbations or when parameter values are unknown. Global methods, on the other hand, investigate the whole space of parameter values and mostly rely on different sampling techniques. This can be computationally inefficient. To address these shortcomings 'glocal' approaches were developed that apply global and local approaches in an effective and rigorous manner. Results Herein, we present a computational approach for 'glocal' analysis of viable parameter regions in biological models. The methodology is based on the exploration of high-dimensional viable parameter spaces with global and local sampling, clustering and dimensionality reduction techniques. The proposed methodology allows us to efficiently investigate the viable parameter space regions, evaluate the regions which exhibit the largest robustness, and to gather new insights regarding the size and connectivity of the viable parameter regions. We evaluate the proposed methodology on three different synthetic gene regulatory network models, i.e. the repressilator model, the model of the AC-DC circuit and the model of the edge-triggered master-slave D flip-flop. Conclusions The proposed methodology provides a rigorous assessment of the shape and size of viable parameter regions based on (1) the mathematical description of the biological system of interest, (2) constraints that define feasible parameter regions and (3) cost function that defines the desired or observed behavior of the system. These insights can be used to assess the robustness of biological systems, even in the case when parameter values are unknown and more importantly, even when there are multiple poorly connected viable parameter regions in the solution space. Moreover, the methodology can be efficiently applied to the analysis of biological systems that exhibit multiple modes of the targeted behavior.

中文翻译:

合成生物系统模型中可行参数区域的计算分析。

背景 具有不同拓扑和/或动态特性的基因调控网络可能表现出相似的行为。应该首选对其内部和外部因素的扰动不太敏感的系统。敏感性和稳健性评估方法已经开发出来,大致可分为局部方法和全局方法。局部方法仅关注标称参数值周围的局部区域。当参数在大范围的参数扰动或参数值未知时表现出所需的行为时,这可能会出现问题。另一方面,全局方法研究参数值的整个空间,并且主要依赖于不同的采样技术。这在计算上可能是低效的。为了解决这些缺点“全球本地化” 制定了以有效和严格的方式应用全球和地方方法的方法。结果 在此,我们提出了一种计算方法,用于对生物模型中的可行参数区域进行“全局”分析。该方法基于使用全局和局部采样、聚类和降维技术探索高维可行参数空间。所提出的方法使我们能够有效地研究可行的参数空间区域,评估表现出最大鲁棒性的区域,并收集有关可行参数区域的大小和连通性的新见解。我们在三种不同的合成基因调控网络模型上评估所提出的方法,即阻遏物模型,AC-DC电路模型和边沿触发主从D触发器模型。结论 所提出的方法基于(1)感兴趣的生物系统的数学描述,(2)定义可行参数区域的约束和(3)定义可行参数区域的成本函数,对可行参数区域的形状和大小进行了严格评估。期望或观察到的系统行为。这些见解可用于评估生物系统的稳健性,即使在参数值未知的情况下,更重要的是,即使在解决方案空间中有多个连接不良的可行参数区域也是如此。此外,该方法可以有效地应用于分析表现出多种目标行为模式的生物系统。结论 所提出的方法基于(1)感兴趣的生物系统的数学描述,(2)定义可行参数区域的约束和(3)定义可行参数区域的成本函数,对可行参数区域的形状和大小进行了严格评估。期望或观察到的系统行为。这些见解可用于评估生物系统的稳健性,即使在参数值未知的情况下,更重要的是,即使在解决方案空间中有多个连接不良的可行参数区域也是如此。此外,该方法可以有效地应用于分析表现出多种目标行为模式的生物系统。结论 所提出的方法基于(1)感兴趣的生物系统的数学描述,(2)定义可行参数区域的约束和(3)定义可行参数区域的成本函数,对可行参数区域的形状和大小进行了严格评估。期望或观察到的系统行为。这些见解可用于评估生物系统的稳健性,即使在参数值未知的情况下,更重要的是,即使在解决方案空间中有多个连接不良的可行参数区域也是如此。此外,该方法可以有效地应用于分析表现出多种目标行为模式的生物系统。
更新日期:2020-04-22
down
wechat
bug