当前位置: X-MOL 学术Environ. MicroBiol. Rep › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Control of sulfidogenesis through bio-oxidation of H2S coupled to (per)chlorate reduction.
Environmental Microbiology Reports ( IF 3.3 ) Pub Date : 2014-04-04 , DOI: 10.1111/1758-2229.12156
Patrick Gregoire 1 , Anna Engelbrektson 1 , Christopher G. Hubbard 2 , Zoltan Metlagel 3 , Roseann Csencsits 3 , Manfred Auer 3 , Mark E. Conrad 2 , Jürgen Thieme 4 , Paul Northrup 4 , John D. Coates 1
Affiliation  

We investigated H2S attenuation by dissimilatory perchlorate‐reducing bacteria (DPRB). All DPRB tested oxidized H2S coupled to (per)chlorate reduction without sustaining growth. H2S was preferentially utilized over organic electron donors resulting in an enriched (34S)‐elemental sulfur product. Electron microscopy revealed elemental sulfur production in the cytoplasm and on the cell surface of the DPRB Azospira suillum. Based on our results, we propose a novel hybrid enzymatic‐abiotic mechanism for H2S oxidation similar to that recently proposed for nitrate‐dependent Fe(II) oxidation. The results of this study have implications for the control of biosouring and biocorrosion in a range of industrial environments.

中文翻译:

通过硫化氢的生物氧化和氯酸盐的还原控制硫化物的生成。

我们研究了异化高氯酸盐还原菌(DPRB)对H 2 S的衰减。所有DPRB测试的氧化H 2 S结合(全)氯酸盐还原而不会持续增长。与有机电子给体相比,H 2 S被优先利用,从而产生了富含(34 S)元素的硫产物。电子显微镜揭示了细胞质和DPRB A zospira suillum的细胞表面元素硫的产生。根据我们的结果,我们提出了一种新型的H 2杂合酶-非生物机制S氧化类似于最近提出的硝酸盐依赖性Fe(II)氧化。这项研究的结果对一系列工业环境中的生物变质和生物腐蚀的控制具有重要意义。
更新日期:2014-04-04
down
wechat
bug