当前位置: X-MOL 学术Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced osteoblasts adhesion and collagen formation on biomimetic polyvinylidene fluoride (PVDF) films for bone regeneration.
Biomedical Materials ( IF 4 ) Pub Date : 2019-09-20 , DOI: 10.1088/1748-605x/ab3c20
Piotr K Szewczyk 1 , Sara Metwally , Zuzanna J Krysiak , Łukasz Kaniuk , Joanna E Karbowniczek , Urszula Stachewicz
Affiliation  

Bone tissue engineering can be utilized to study the early events of osteoconduction. Fundamental research in cell adhesion to various geometries and proliferation has shown the potential of extending it to implantable devices for regenerative medicine. Following this concept in our studies, first, we developed well-controlled processing of polyvinylidene fluoride (PVDF) film to obtain a surface biomimicking ECM. We optimized the manufacturing dependent on humidity and temperature during spin-coating of a polymer solution. The mixture of solvents such as dimethylacetamide and acetone together with high humidity conditions led to a biomimetic, highly porous and rough surface, while with lower humidity and high temperatures drying allowed us to obtain a smooth and flat PVDF film. The roughness of the PVDF film was biofabricated and compared to smooth films in cell culture studies for adhesion and proliferation of osteoblasts. The bioinspired roughness of our films enhanced the osteoblast adhesion by over 44%, and there was collagen formation already after 7 days of cell culturing that was proved via scanning electron microscopy observation, light microscopy imaging after Sirius Red staining, and proliferation test such as MTS. Cell development, via extended filopodia, formed profoundly on the rough PVDF surface, demonstrated the potential of the structural design of biomimetic surfaces to enhance further bone tissue regeneration.

中文翻译:

仿生聚偏二氟乙烯(PVDF)膜上增强的成骨细胞粘附力和胶原蛋白形成,用于骨骼再生。

骨组织工程可用于研究骨传导的早期事件。有关细胞对各种几何形状和增殖的粘附性的基础研究表明,将其扩展到可再生医学植入设备的潜力。在我们的研究中,遵循这一概念,首先,我们开发了可控的聚偏二氟乙烯(PVDF)薄膜加工工艺,以获得表面生物仿制的ECM。我们在旋涂聚合物溶液时根据湿度和温度优化了制造。溶剂(例如二甲基乙酰胺和丙酮)的混合物与高湿度条件一起导致仿生,高度多孔和粗糙的表面,而在较低的湿度和高温下干燥使我们能够获得光滑平整的PVDF薄膜。将PVDF膜的粗糙度进行了生物加工,并在细胞培养研究中将其与光滑膜进行了比较,以了解成骨细胞的粘附和增殖情况。我们的薄膜受到生物启发的粗糙度使成骨细胞的粘附力提高了44%以上,并且在细胞培养7天后已经形成了胶原蛋白,这可以通过扫描电子显微镜观察,Sirius Red染色后的光学显微镜成像以及诸如MTS的增殖测试来证明。通过延伸的丝状伪足,在粗糙的PVDF表面上深深地形成细胞,这证明了仿生表面结构设计的潜力,可以进一步促进骨组织的再生。细胞培养7天后已经形成胶原蛋白,通过扫描电子显微镜观察,Sirius Red染色后的光学显微镜成像以及MTS等增殖试验证明了这一点。通过延伸的丝状伪足,在粗糙的PVDF表面上深深地形成细胞,这证明了仿生表面结构设计的潜力,可以进一步促进骨组织的再生。细胞培养7天后已经形成胶原蛋白,通过扫描电子显微镜观察,Sirius Red染色后的光学显微镜成像以及MTS等增殖试验证明了这一点。通过延伸的丝状伪足,在粗糙的PVDF表面上深深地形成细胞,这证明了仿生表面结构设计的潜力,可以进一步促进骨组织的再生。
更新日期:2019-11-01
down
wechat
bug