当前位置: X-MOL 学术Hippocampus › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation.
Hippocampus ( IF 3.5 ) Pub Date : 2019-11-07 , DOI: 10.1002/hipo.23171
Edmund T Rolls 1, 2
Affiliation  

A theory and model of spatial coordinate transforms in the dorsal visual system through the parietal cortex that enable an interface via posterior cingulate and related retrosplenial cortex to allocentric spatial representations in the primate hippocampus is described. First, a new approach to coordinate transform learning in the brain is proposed, in which the traditional gain modulation is complemented by temporal trace rule competitive network learning. It is shown in a computational model that the new approach works much more precisely than gain modulation alone, by enabling neurons to represent the different combinations of signal and gain modulator more accurately. This understanding may have application to many brain areas where coordinate transforms are learned. Second, a set of coordinate transforms is proposed for the dorsal visual system/parietal areas that enables a representation to be formed in allocentric spatial view coordinates. The input stimulus is merely a stimulus at a given position in retinal space, and the gain modulation signals needed are eye position, head direction, and place, all of which are present in the primate brain. Neurons that encode the bearing to a landmark are involved in the coordinate transforms. Part of the importance here is that the coordinates of the allocentric view produced in this model are the same as those of spatial view cells that respond to allocentric view recorded in the primate hippocampus and parahippocampal cortex. The result is that information from the dorsal visual system can be used to update the spatial input to the hippocampus in the appropriate allocentric coordinate frame, including providing for idiothetic update to allow for self-motion. It is further shown how hippocampal spatial view cells could be useful for the transform from hippocampal allocentric coordinates to egocentric coordinates useful for actions in space and for navigation.

中文翻译:

空间坐标变换将异体中心海马和自我中心顶叶灵长类大脑系统联系起来,用于记忆、空间行动和导航。

描述了通过顶叶皮层在背侧视觉系统中进行空间坐标转换的理论和模型,该模型通过后扣带回和相关的后皮层与灵长类动物海马体中的异心空间表示形成界面。首先,提出了一种在大脑中协调变换学习的新方法,其中传统的增益调制与时间轨迹规则竞争网络学习相辅相成。计算模型表明,通过使神经元能够更准确地表示信号和增益调制器的不同组合,新方法比单独的增益调制更精确。这种理解可能适用于许多学习坐标变换的大脑区域。第二,为背侧视觉系统/顶叶区域提出了一组坐标变换,使得能够在异心空间视图坐标中形成表示。输入刺激仅仅是视网膜空间中给定位置的刺激,所需的增益调制信号是眼睛位置、头部方向和位置,所有这些都存在于灵长类动物的大脑中。将方位编码为地标的神经元参与坐标变换。这里的部分重要性在于,该模型中产生的异心视图的坐标与响应灵长类海马和海马旁皮层中记录的异心视图的空间视图细胞的坐标相同。结果是来自背侧视觉系统的信息可用于在适当的异心坐标系中更新海马体的空间输入,包括提供自然更新以允许自我运动。进一步展示了海马空间视图单元如何用于从海马异中心坐标转换为对空间动作和导航有用的自我中心坐标。
更新日期:2020-04-13
down
wechat
bug