当前位置: X-MOL 学术Bioinspir. Biomim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct cell imprint lithography in superconductive carbon black polymer composites: process optimization, characterization and in vitro toxicity analysis.
Bioinspiration & Biomimetics ( IF 3.4 ) Pub Date : 2019-11-06 , DOI: 10.1088/1748-3190/ab1243
Vigneswaran Narayanamurthy 1 , Fahmi Samsuri , Al'aina Yuhainis Firus Khan , Hairul Aini Hamzah , Madia Baizura Baharom , T V Kumary , P R Anil Kumar , Deepa K Raj
Affiliation  

Cell imprint lithography (CIL) or cell replication plays a vital role in fields like biomimetic smart culture substrates, bone tissue engineering, cell guiding, cell adhesion, tissue engineering, cell microenvironments, tissue microenvironments, cell research, drug delivery, diagnostics, therapeutics and many other applications. Herein we report a new formulation of superconductive carbon black photopolymer composite and its characterization towards a CIL process technique. In this article, we demonstrated an approach of using a carbon nanoparticle-polymer composite (CPC) for patterning cells. It is observed that a 0.3 wt % load of carbon nanoparticles (CNPs) in a carbon polymer mixture (CPM) was optimal for cell-imprint replica fabrication. The electrical resistance of the 3-CPC (0.3 wt %) was reduced by 68% when compared to N-CPC (0 wt %). This method successfully replicated the single cell with sub-organelle scale. The shape of microvesicles, grooves, pores, blebs or microvilli on the cellular surface was patterned clearly. This technique delivers a free-standing cell feature substrate. In vitro evaluation of the polymer demonstrated it as an ideal candidate for biomimetic biomaterial applications. This approach also finds its application in study based on morphology, especially for drug delivery applications and for investigations based on molecular pathways.

中文翻译:

超导电炭黑聚合物复合材料中的直接细胞压印光刻:工艺优化,表征和体外毒性分析。

细胞印迹光刻(CIL)或细胞复制在仿生智能培养基质,骨组织工程,细胞引导,细胞粘附,组织工程,细胞微环境,组织微环境,细胞研究,药物递送,诊断,治疗和许多其他应用程序。本文中,我们报告了一种超导电炭黑光聚合物复合材料的新配方及其对CIL工艺技术的表征。在本文中,我们展示了一种使用碳纳米粒子-聚合物复合材料(CPC)对细胞进行图案化的方法。观察到,在碳聚合物混合物(CPM)中0.3重量%的碳纳米颗粒(CNP)负载最适合用于电池压印复制品的制造。与N-CPC(0 wt%)相比,3-CPC(0.3 wt%)的电阻降低了68%。该方法成功地复制了具有亚细胞器规模的单个细胞。细胞表面上的微泡,凹槽,孔,气泡或微绒毛的形状清晰可见。该技术提供了独立的电池特征基材。聚合物的体外评估表明,它是仿生生物材料应用的理想选择。这种方法还可以在基于形态学的研究中找到其应用,特别是在药物输送应用和基于分子途径的研究中。聚合物的体外评估表明,它是仿生生物材料应用的理想选择。这种方法还可以在基于形态学的研究中找到其应用,特别是在药物输送应用和基于分子途径的研究中。聚合物的体外评估表明,它是仿生生物材料应用的理想选择。这种方法还可以在基于形态学的研究中找到其应用,特别是在药物输送应用和基于分子途径的研究中。
更新日期:2019-11-01
down
wechat
bug