当前位置: X-MOL 学术Math. Biosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Disease-induced chaos, coexistence, oscillations, and invasion failure in a competition-model with strong Allee effect.
Mathematical Biosciences ( IF 4.3 ) Pub Date : 2019-10-14 , DOI: 10.1016/j.mbs.2019.108267
M C Köhnke 1 , H Malchow 1
Affiliation  

Biological invasions have impacts on diverse social, ecological, and economic issues. Among others, invasion success can be determined by epidemiological aspects, intraspecific dynamics as, e.g., Allee effects, and interspecific interactions as, e.g., competition. In this study, a process-based model describing competitive eco-epidemiological dynamics of two species, which are both subject to an Allee effect, is developed. Only one of the species can be infected by an infectious disease which is transmitted both, horizontally and vertically. The local dynamics of the disease-free competition model, the competition-free SI-model, and the full eco-epidemiological model are considered. In particular, it is shown that an outbreak of a disease is more likely in the absence of a competitor. Thus, competition and species richness can increase disease resistance of particular species in a community. The complete partial differential equation model is investigated both, analytically and numerically in order to determine possible impacts of the disease on the invasion dynamics. It is shown that in case of strong competition, invasion fronts are always slowed down or even reversed due to the infection for parameter regimes in which the invader is the stronger competitor in the absence of the disease while in case of weak competitive pressure, the dynamics are more complex. Besides slowing down of the invasion front, disease-induced chaos, coexistence (i.e., coexistence in a regime in which coexistence without disease would not be possible), and oscillations can occur. Furthermore, spatial spread can temporarily prevent an infected population from going extinct with potentially detrimental impacts for the resident. This happens via a (replicating) traveling pulse which pushes the competitor out of the domain. The results are discussed in order to enhance the understanding of mechanisms underlying biological invasions and to develop better management strategies for biological invasions as, e.g., selective infections.

中文翻译:

在具有强Allee效应的竞争模型中,疾病引起的混乱,共存,振荡和入侵失败。

生物入侵对各种社会,生态和经济问题都有影响。其中,可以通过流行病学方面,种内动态(例如Allee效应)和种间相互作用(例如竞争)来确定入侵成功。在这项研究中,建立了一个基于过程的模型,该模型描述了两种都具有阿利效应的竞争生态流行病学动态。仅有一种物种可以被水平和垂直传播的传染病感染。考虑了无病竞争模型,无竞争SI模型和完整的生态流行病学模型的局部动力学。特别地,显示出在没有竞争者的情况下疾病更容易爆发。从而,竞争和物种丰富性可以增加社区中特定物种的抗病能力。对完整的偏微分方程模型进行了分析和数值研究,以确定疾病对入侵动力学的可能影响。结果表明,在竞争激烈的情况下,由于参数方案的感染,入侵前沿总是被放慢甚至逆转,在这种情况下,入侵者是在没有疾病的情况下更强的竞争者,而在竞争压力较弱的情况下,动态比较复杂。除了放慢入侵速度之外,还可能引起疾病引起的混乱,共存(即,在没有疾病的情况下无法共存的制度中共存)和振荡。此外,空间扩散可以暂时防止受感染的人口灭绝,并对居民造成潜在的不利影响。这是通过(复制)行进脉冲而发生的,该行进脉冲将竞争对手赶出了领域。对结果进行了讨论,以增进对生物学入侵基础机制的理解,并为生物学入侵(例如选择性感染)制定更好的管理策略。
更新日期:2019-11-01
down
wechat
bug