当前位置: X-MOL 学术J. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mantle Redox Evolution and the Oxidation State of the Archean Atmosphere
The Journal of Geology ( IF 1.8 ) Pub Date : 1993-03-01 , DOI: 10.1086/648219
J F Kasting 1 , D H Eggler , S P Raeburn
Affiliation  

Current models predict that the early atmosphere consisted mostly of $$CO_{2}, N_{2}$$, and $$H_{2}O$$, along with traces of $$H_{2}$$ and CO. Such models are based on the assumption that the redox state of the upper mantle has not changed, so that volcanic gas composition has remained approximately constant with time. We argue here that this assumption is probably incorrect: the upper mantle was originally more reduced than today, although not as reduced as the metal arrest level, and has become progressively more oxidized as a consequence of the release of reduced volcanic gases and the subduction of hydrated, oxidized seafloor. Data on the redox state of sulfide and chromite inclusions in diamonds imply that the process of mantle oxidation was slow, so that reduced conditions could have prevailed for as much as half of the earth's history. To be sure, other oxybarometers of ancient rocks give different results, so the question of when the mantle redox state has changed remains unresolved. Mantle redox evolution is intimately linked to the oxidation state of the primitive atmosphere: A reduced Archean atmosphere would have had a high hydrogen escape rate and should correspond to a changing mantle redox state; an oxidized Archean atmosphere should be associated with a constant mantle redox state. The converses of these statements are also true. Finally, our theory of mantle redox evolution may explain why the Archean atmosphere remained oxygen-deficient until ~2.0 billion years ago (Ga) despite a probable early origin for photosynthesis.

中文翻译:

地幔氧化还原演化和太古代大气的氧化状态

目前的模型预测,早期大气主要由 $$CO_{2}、N_{2}$$ 和 $$H_{2}O$$ 以及 $$H_{2}$$ 和 CO 的痕迹组成。这些模型基于上地幔的氧化还原状态没有改变的假设,因此火山气体成分随时间保持大致恒定。我们在此争辩说,这个假设可能是错误的:上地幔最初比今天还原得更多,虽然不像金属滞留水平那样还原,并且由于火山气体的释放和火山的俯冲而逐渐变得更加氧化。水合、氧化的海底。钻石中硫化物和铬铁矿内含物氧化还原状态的数据表明地幔氧化过程是缓慢的,因此在地球历史的一半时间里,还原条件可能普遍存在。可以肯定的是,其他古代岩石的氧气压计给出了不同的结果,因此地幔氧化还原状态何时发生变化的问题仍未解决。地幔氧化还原演化与原始大气的氧化态密切相关:减少的太古代大气会具有较高的氢逃逸率,并且应该对应于不断变化的地幔氧化还原状态;氧化的太古代大气应该与恒定的地幔氧化还原状态有关。这些陈述的逆命题也是正确的。最后,我们的地幔氧化还原演化理论可以解释为什么太古代大气在大约 20 亿年前(Ga)之前仍然缺氧,尽管光合作用可能是早期起源的。地幔氧化还原演化与原始大气的氧化态密切相关:减少的太古代大气会具有较高的氢逃逸率,并且应该对应于不断变化的地幔氧化还原状态;氧化的太古代大气应该与恒定的地幔氧化还原状态有关。这些陈述的逆命题也是正确的。最后,我们的地幔氧化还原演化理论可以解释为什么太古代大气在大约 20 亿年前(Ga)之前仍然缺氧,尽管光合作用可能是早期起源的。地幔氧化还原演化与原始大气的氧化态密切相关:减少的太古代大气会具有较高的氢逃逸率,并且应该对应于不断变化的地幔氧化还原状态;氧化的太古代大气应该与恒定的地幔氧化还原状态有关。这些陈述的逆命题也是正确的。最后,我们的地幔氧化还原演化理论可以解释为什么太古代大气在大约 20 亿年前(Ga)之前仍然缺氧,尽管光合作用可能是早期起源的。氧化的太古代大气应该与恒定的地幔氧化还原状态有关。这些陈述的逆命题也是正确的。最后,我们的地幔氧化还原演化理论可以解释为什么太古代大气在大约 20 亿年前(Ga)之前仍然缺氧,尽管光合作用可能是早期起源的。氧化的太古代大气应该与恒定的地幔氧化还原状态有关。这些陈述的逆命题也是正确的。最后,我们的地幔氧化还原演化理论可以解释为什么太古代大气在大约 20 亿年前(Ga)之前仍然缺氧,尽管光合作用可能是早期起源的。
更新日期:1993-03-01
down
wechat
bug