Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Instantaneous Elastography in Tissues and Hard Materials Using Bulk Modulus and Density Determined Without Externally Applied Material Deformation.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control ( IF 3.6 ) Pub Date : 2019-10-29 , DOI: 10.1109/tuffc.2019.2950343
Yuqi Jin , Ezekiel Walker , Arkadii Krokhin , Hyeonu Heo , Tae-Youl Choi , Arup Neogi

Ultrasound is a continually developing technology that is broadly used for fast, non-destructive mechanical property detection of hard and soft materials in applications ranging from manufacturing to biomedical. In this study, a novel monostatic longitudinal ultrasonic pulsing elastography imaging method is introduced. The existing elastography methods require an acoustic radiational or dynamic compressive externally applied force to determine the effective bulk modulus or density. This new, passive M-mode imaging technique does not require an external stress and can be effectively used for both soft and hard materials. Strain map imaging and shear wave elastography are two current categories of M-mode imaging that show both relative and absolute elasticity information. The new technique is applied to hard materials and soft material tissue phantoms for demonstrating effective bulk modulus and effective density mapping. When compared with standard techniques, the effective parameters fall within 10% of standard characterization methods for both hard and soft materials. As neither the standard A-mode imaging technique nor the presented technique require an external applied force, the techniques are applied to composite heterostructures and the findings presented for comparison. The presented passive M-mode technique is found to have enhanced resolution over standard A-mode modalities.

中文翻译:

使用体积模量和密度确定的组织和硬质材料的增强瞬时弹性成像,无需外部施加材料变形。

超声波是一项不断发展的技术,广泛用于从制造到生物医学的各种应用中的硬质和软质材料的快速,无损机械性能检测。在这项研究中,介绍了一种新颖的单静态纵向超声脉冲弹性成像技术。现有的弹性成像方法需要外部的声辐射或动态压缩力来确定有效的体积模量或密度。这种新的无源M模式成像技术不需要外部压力,并且可以有效地用于软材料和硬材料。应变图成像和剪切波弹性成像是M模式成像的两个当前类别,可同时显示相对和绝对弹性信息。这项新技术被应用于硬材料和软材料组织模型,以证明有效的体积模量和有效的密度映射。与标准技术相比,硬质和软质材料的有效参数均在标准表征方法的10%范围内。由于标准的A模式成像技术和提出的技术都不需要外部作用力,因此将这些技术应用于复合异质结构,并提出了用于比较的发现。发现所提出的无源M模式技术具有比标准A模式模态更高的分辨率。由于标准的A模式成像技术和提出的技术都不需要外部作用力,因此将这些技术应用于复合异质结构,并提出了用于比较的发现。发现所提出的无源M模式技术具有比标准A模式模态更高的分辨率。由于标准的A模式成像技术和提出的技术都不需要外部作用力,因此将这些技术应用于复合异质结构,并提出了用于比较的发现。发现所提出的无源M模式技术具有比标准A模式模态更高的分辨率。
更新日期:2020-03-07
down
wechat
bug