当前位置: X-MOL 学术Cytoskeleton › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Organization of associating or crosslinked actin filaments in confinement.
Cytoskeleton ( IF 2.9 ) Pub Date : 2019-10-31 , DOI: 10.1002/cm.21565
Maral Adeli Koudehi 1 , David M Rutkowski 1 , Dimitrios Vavylonis 1
Affiliation  

A key factor of actin cytoskeleton organization in cells is the interplay between the dynamical properties of actin filaments and cell geometry, which restricts, confines and directs their orientation. Crosslinking interactions among actin filaments, together with geometrical cues and regulatory proteins can give rise to contractile rings in dividing cells and actin rings in neurons. Motivated by recent in vitro experiments, in this work we performed computer simulations to study basic aspects of the interplay between confinement and attractive interactions between actin filaments. We used a spring‐bead model and Brownian dynamics to simulate semiflexible actin filaments that polymerize in a confining sphere with a rate proportional to the monomer concentration. We model crosslinking, or attraction through the depletion interaction, implicitly as an attractive short‐range potential between filament beads. In confining geometries smaller than the persistence length of actin filaments, we show rings can form by curving of filaments of length comparable to, or longer than the confinement diameter. Rings form for optimal ranges of attractive interactions that exist in between open bundles, irregular loops, aggregated, and unbundled morphologies. The probability of ring formation is promoted by attraction to the confining sphere boundary and decreases for large radii and initial monomer concentrations, in agreement with prior experimental data. The model reproduces ring formation along the flat plane of oblate ellipsoids.

中文翻译:

限制内结合或交联的肌动蛋白丝的组织。

细胞中肌动蛋白细胞骨架组织的关键因素是肌动蛋白丝的动力学特性与细胞几何结构之间的相互作用,从而限制,限制和指导其方向。肌动蛋白丝之间的交联相互作用以及几何线索和调节蛋白可在分裂细胞和神经元中的肌动蛋白环上产生收缩环。受近期体外实验的影响,在这项工作中,我们进行了计算机模拟,以研究肌动蛋白丝之间的约束作用和吸引力相互作用之间相互作用的基本方面。我们使用弹簧珠模型和布朗动力学来模拟半柔性肌动蛋白丝,它们在密闭球体中以与单体浓度成比例的速率聚合。我们对交联或通过耗尽相互作用的吸引进行建模,隐含地作为细丝珠之间的有吸引力的短距离电势。在小于肌动蛋白细丝的持久长度的封闭几何形状中,我们显示出可以通过弯曲长度可比或大于约束直径的细丝来形成环。环形成为在开放束,不规则环,聚集和非束缚形态之间存在的有吸引力的相互作用的最佳范围。与先前的实验数据一致,通过吸引到约束球边界可以提高成环的可能性,并且对于大半径和初始单体浓度,成环的可能性会降低。该模型沿扁椭圆形的平面再现环的形成。我们显示出可以通过弯曲长度等于或大于约束直径的细丝来形成环。环形成为在开放束,不规则环,聚集和非束缚形态之间存在的有吸引力的相互作用的最佳范围。与先前的实验数据相一致,由于吸引到约束球边界而提高了成环的可能性,并且对于大半径和初始单体浓度而言,成环的可能性降低了。该模型沿扁椭圆形的平面再现环的形成。我们显示出可以通过弯曲长度等于或大于约束直径的细丝来形成环。环形成为在开放束,不规则环,聚集和非束缚形态之间存在的有吸引力的相互作用的最佳范围。与先前的实验数据相一致,由于吸引到约束球边界而提高了成环的可能性,并且对于大半径和初始单体浓度而言,成环的可能性降低了。该模型沿扁椭圆形的平面再现环的形成。与先前的实验数据相一致,由于吸引到约束球边界而提高了成环的可能性,并且对于大半径和初始单体浓度而言,成环的可能性降低了。该模型沿扁椭圆形的平面再现环的形成。与先前的实验数据相一致,由于吸引到约束球边界而提高了成环的可能性,并且对于大半径和初始单体浓度而言,成环的可能性降低了。该模型沿扁椭圆形的平面再现环的形成。
更新日期:2019-10-31
down
wechat
bug