当前位置: X-MOL 学术Arthropod Struct. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neuroanatomical correlates of mobility: Sensory brain centres are bigger in winged than in wingless parthenogenetic pea aphid females.
Arthropod Structure & Development ( IF 2 ) Pub Date : 2019-09-27 , DOI: 10.1016/j.asd.2019.100883
Christophe Gadenne 1 , Claudia Groh 2 , Kornelia Grübel 2 , Jens Joschinski 3 , Jochen Krauss 3 , Jakob Krieger 4 , Wolfgang Rössler 2 , Sylvia Anton 1
Affiliation  

Many aphid species reproduce parthenogenetically throughout most of the year, with individuals having identical genomes. Nevertheless, aphid clones display a marked polyphenism with associated behavioural differences. Pea aphids (Acyrthosiphon pisum), when crowded, produce winged individuals, which have a larger dispersal range than wingless individuals. We examined here if brain structures linked to primary sensory processing and high-order motor control change in size as a function of wing polyphenism. Using micro-computing tomography (micro-CT) scans and immunocytochemical staining with anti-synapsin antibody, we reconstructed primary visual (optic lobes) and olfactory (antennal lobes) neuropils, together with the central body of winged and wingless parthenogenetic females of A. pisum for volume measurements. Absolute neuropil volumes were generally bigger in anti-synapsin labelled brains compared to micro-CT scans. This is potentially due to differences in rearing conditions of the used aphids. Independent of the method used, however, winged females consistently had larger antennal lobes and optic lobes than wingless females in spite of a larger overall body size of wingless compared to winged females. The volume of the central body, on the other hand was not significantly different between the two morphs. The larger primary sensory centres in winged aphids might thus provide the neuronal substrate for processing different environmental information due to the increased mobility during flight.

中文翻译:

活动性的神经解剖学关联:有翅的感觉性中枢比无翅的孤雌豌豆蚜虫雌性大。

在整个一年的大部分时间里,许多蚜虫物种都孤雌繁殖,个体具有相同的基因组。然而,蚜虫克隆表现出明显的多态性和相关的行为差异。豌豆蚜虫(Acyrthosiphon pisum)拥挤时,会产生有翅的个体,其散布范围比无翅的个体大。我们在这里检查了与初级感觉处理和高级运动控制有关的大脑结构是否根据翼多态性而改变大小。使用微计算机断层扫描(micro-CT)扫描和抗突触素抗体的免疫细胞化学染色,我们重建了A的有翅和无翅孤雌生殖雌性的中央视神经细胞(视神经叶)和嗅觉神经(嗅神经叶)。 pisum用于体积测量。与micro-CT扫描相比,抗突触素标记的大脑的绝对Neuropil体积通常更大。这可能是由于所用蚜虫的饲养条件不同所致。然而,与所用方法无关,有翅雌性与无翅雌性相比,始终比无翅雌性具有更大的触角和视裂,尽管无翅雌性总体上比有翅雌性更大。另一方面,两个变体之间的中心体的体积没有显着差异。有翼蚜虫中较大的主要感觉中心可能会因此提供神经元底物,以处理飞行过程中增加的活动性,从而处理不同的环境信息。然而,与所用方法无关,有翅雌性与无翅雌性相比,始终比无翅雌性具有更大的触角和视裂,尽管无翅雌性总体上比有翅雌性更大。另一方面,两个变体之间的中心体的体积没有显着差异。有翼蚜虫中较大的主要感觉中心可能会因此提供神经元底物,以处理飞行过程中增加的活动性,从而处理不同的环境信息。然而,与所用方法无关,有翅雌性与无翅雌性相比,始终比无翅雌性具有更大的触角和视裂,尽管无翅雌性总体上比有翅雌性更大。另一方面,两个变体之间的中心体的体积没有显着差异。有翼蚜虫中较大的主要感觉中心可能会因此提供神经元底物,以处理飞行过程中增加的活动性,从而处理不同的环境信息。
更新日期:2019-11-01
down
wechat
bug