当前位置: X-MOL 学术J. R. Stat. Soc. Ser. C Appl. Stat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improving the identification of antigenic sites in the H1N1 influenza virus through accounting for the experimental structure in a sparse hierarchical Bayesian model.
The Journal of the Royal Statistical Society: Series C (Applied Statistics) ( IF 1.6 ) Pub Date : 2019-02-03 , DOI: 10.1111/rssc.12338
Vinny Davies 1 , William T Harvey 1 , Richard Reeve 1 , Dirk Husmeier 1
Affiliation  

Understanding how genetic changes allow emerging virus strains to escape the protection afforded by vaccination is vital for the maintenance of effective vaccines. We use structural and phylogenetic differences between pairs of virus strains to identify important antigenic sites on the surface of the influenza A(H1N1) virus through the prediction of haemagglutination inhibition (HI) titre: pairwise measures of the antigenic similarity of virus strains. We propose a sparse hierarchical Bayesian model that can deal with the pairwise structure and inherent experimental variability in the H1N1 data through the introduction of latent variables. The latent variables represent the underlying HI titre measurement of any given pair of virus strains and help to account for the fact that, for any HI titre measurement between the same pair of virus strains, the difference in the viral sequence remains the same. Through accurately representing the structure of the H1N1 data, the model can select virus sites which are antigenic, while its latent structure achieves the computational efficiency that is required to deal with large virus sequence data, as typically available for the influenza virus. In addition to the latent variable model, we also propose a new method, the block-integrated widely applicable information criterion biWAIC, for selecting between competing models. We show how this enables us to select the random effects effectively when used with the model proposed and we apply both methods to an A(H1N1) data set.

中文翻译:

通过解释稀疏分层贝叶斯模型中的实验结构,改进 H1N1 流感病毒抗原位点的识别。

了解基因变化如何使新出现的病毒株逃脱疫苗提供的保护对于维持有效疫苗至关重要。我们使用病毒株对之间的结构和系统发育差异,通过预测血凝抑制 (HI) 滴度:病毒株抗原相似性的成对测量来识别甲型 H1N1 流感病毒表面上的重要抗原位点。我们提出了一个稀疏分层贝叶斯模型,该模型可以通过引入潜在变量来处理 H1N1 数据中的成对结构和固有的实验变异性。潜在变量代表任何给定病毒株对的潜在 HI 滴度测量,并有助于解释以下事实:对于同一对病毒株之间的任何 HI 滴度测量,病毒序列的差异保持不变。通过准确地表示 H1N1 数据的结构,该模型可以选择具有抗原性的病毒位点,而其潜在结构实现了处理大型病毒序列数据所需的计算效率,这通常适用于流感病毒。除了潜在变量模型之外,我们还提出了一种新方法,即块集成广泛适用的信息准则 biWAIC,用于在竞争模型之间进行选择。我们展示了当与建议的模型一起使用时,这如何使我们能够有效地选择随机效应,并且我们将这两种方法应用于 A(H1N1) 数据集。而其潜在结构实现了处理大型病毒序列数据所需的计算效率,这通常可用于流感病毒。除了潜在变量模型之外,我们还提出了一种新方法,即块集成广泛适用的信息准则 biWAIC,用于在竞争模型之间进行选择。我们展示了当与建议的模型一起使用时,这如何使我们能够有效地选择随机效应,并且我们将这两种方法应用于 A(H1N1) 数据集。而其潜在结构实现了处理大型病毒序列数据所需的计算效率,这通常可用于流感病毒。除了潜在变量模型之外,我们还提出了一种新方法,即块集成广泛适用的信息准则 biWAIC,用于在竞争模型之间进行选择。我们展示了当与建议的模型一起使用时,这如何使我们能够有效地选择随机效应,并且我们将这两种方法应用于 A(H1N1) 数据集。
更新日期:2019-11-01
down
wechat
bug