当前位置: X-MOL 学术Macromol. Biosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polymer Structure-Guided Self-Assisted Preparation of Poly(ester-thioether)-Based Hollow Porous Microspheres and Hierarchically Interconnected Microcages for Drug Release.
Macromolecular Bioscience ( IF 4.6 ) Pub Date : 2019-09-04 , DOI: 10.1002/mabi.201900171
Furong Cheng 1 , Ting Su 2 , Yuji Pu 1 , Wenxia Gao 3 , Bin He 1
Affiliation  

Porous polymer microspheres (PPMs) have been widely applied in various biomedical fields. Herein, the self‐assisted preparation of poly(ester‐thioether)‐based porous microspheres and hierarchical microcages, whose pore sizes can be controlled by varying the polymer structures, is reported. Poly(ester‐thioether)s with alkyl side chains (carbon atom numbers were 2, 4, and 8) can generate hollow porous microspheres; the longer alkyl chain length, the larger pore size of microspheres. The allyl‐modified poly(ester‐thioether) (PHBDT‐g‐C3) can form highly open, hierarchically interconnected microcages. A formation mechanism of these PPMs is proposed; the hydrophobic side chains‐mediated stabilization of oil droplets dictate the droplet aggregation and following solvent evaporation, which is the key to the formation of PPMs. The hierarchically interconnected microcages of PHBDT‐g‐C3 are due to the partially crosslinking of polymers. Pore sizes of PPMs can be further tuned by a simple mixing strategy of poly(ester‐thioether)s with different pore‐forming abilities. The potential application of these PPMs as H2O2‐responsive vehicles for delivery of hydrophobic (Nile Red) and hydrophilic (doxorubicin hydrochloride) cargos is also investigated. The microspheres with larger pore sizes show faster in vitro drug release. The poly(ester‐thioether)‐based polymer microspheres can open a new avenue for the design of PPMs and provide a H2O2‐responsive drug delivery platform.

中文翻译:

聚合物结构引导的基于聚(酯-硫醚)的空心多孔微球和分层互连微笼的药物释放自辅助制备。

多孔聚合物微球(PPM)已广泛应用于各种生物医学领域。本文报道了基于聚(酯-硫醚)的多孔微球和分级微笼的自辅助制备,其孔径可通过改变聚合物结构来控制。具有烷基侧链(碳原子数分别为2、4和8)的聚(酯-硫醚)可以生成空心的微球。烷基链长度越长,微球的孔径越大。烯丙基改性的聚(酯-硫醚)(PHBDT‐ g‐ C 3)可以形成高度开放的,层次结构互连的微型笼。提出了这些PPM的形成机理。疏水性侧链介导的油滴稳定作用决定了油滴的聚集以及溶剂的蒸发,这是形成PPM的关键。PHBDT‐ g‐ C 3的分层互连微笼归因于聚合物的部分交联。PPM的孔径可以通过具有不同成孔能力的聚(酯-硫醚)的简单混合策略来进一步调整。这些PPM作为H 2 O 2的潜在应用还研究了用于运送疏水性货物(尼罗红)和亲水性货物(盐酸阿霉素)的应急车辆。具有较大孔径的微球显示出更快的体外药物释放。基于聚(酯-硫醚)的聚合物微球可以为PPM的设计开辟新的途径,并提供H 2 O 2响应型药物输送平台。
更新日期:2019-09-04
down
wechat
bug