当前位置: X-MOL 学术Space Weather › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermospheric Nitric Oxide Response to Shock-led Storms.
Space Weather ( IF 4.288 ) Pub Date : 2017-02-10 , DOI: 10.1002/2016sw001567
D J Knipp 1, 2 , D V Pette 1 , L M Kilcommons 1 , T L Isaacs 1 , A A Cruz 1 , M G Mlynczak 3 , L A Hunt 4 , C Y Lin 5
Affiliation  

We present a multiyear superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating, resulting in a thermostat effect. Our study of nearly 200 events reveals that shock‐led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric “overcooling.” We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions are more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock‐driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events.

中文翻译:

一氧化氮对冲击风暴的响应。

我们使用宽带发射辐射一氧化氮(NO)发射数据,对大气探测进行了多年的叠加时代研究。NO是热层中的微量成分,可通过红外(IR)辐射充当冷却剂。NO冷却与暴风雨时间热层加热相竞争,从而产生恒温效果。我们对近200个事件的研究表明,以冲击为主导的行星际日冕物质抛射(ICME)容易导致早期和过度的热圈NO产生和IR排放。过量的NO排放可通过在强风暴期间冷却热层来阻止热层膨胀。最强的事件减少了中性密度增加的间隔,并产生了一种称为“热球”过冷的现象。我们使用国防气象卫星计划的粒子降水数据显示,行星际激波及其ICME驱动器可以使已知触发热球NO生成的沉淀粒子通量增加一倍以上。焦耳热的同时增加可能会放大效果。反过来,NO排放量则增加了一倍以上。我们讨论了冲击/鞘结构的作用和特征,这些结构允许热层缓和极端风暴时间能量输入的影响,并探讨这些结构可能对中层NO的影响。冲击驱动的热层NO IR冷却可能在极端事件期间的卫星阻力预测挑战中发挥了重要作用。
更新日期:2017-02-10
down
wechat
bug