当前位置: X-MOL 学术Supramol. Chem. › 论文详情
Cationic acyclic cucurbit[n]uril-type containers: synthesis and molecular recognition toward nucleotides.
Supramolecular Chemistry ( IF 1.66 ) Pub Date : 2016-10-18 , DOI: 10.1080/10610278.2016.1167893
David Sigwalt,Peter Y Zavalij,Lyle Isaacs

We report the synthesis of M2NH3 which is a tetracationic analogue of our prototypical acyclic CB[n]-type molecular container M2. Both M1NH3 and M2NH3 possess excellent solubility in D2O and do not undergo intermolecular self-association processes that would impinge on their molecular recognition properties. Compounds M1NH3 and M2NH3 do, however, undergo an intramolecular self-complexation process driven by ion-dipole interactions between the ureidyl C=O portals and the OCH2CH2NH3 arms along with inclusion of one aromatic wall in its own hydrophobic cavity. The Ka values for M1NH3 and M2NH3 toward seven nucleotides were determined by 1H NMR titration and found to be quite modest (Ka in the 102 - 103 M-1 range) although M2NH3 is slightly more potent. The more highly charged guests (e.g. ATP) form stronger complexes with M1NH3 and M2NH3 than the less highly charged guest (e.g. ADP, AMP). The work highlights the dominant influence of the ureidyl C=O portals on the molecular recognition behavior of acyclic CB[n]-type receptors and suggests routes (e.g. more highly charged arms) to enhance their recognition behavior toward anions.
更新日期:2019-11-01

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug