当前位置: X-MOL 学术Tissue Eng. Part B Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
Tissue Engineering, Part B: Reviews ( IF 6.4 ) Pub Date : 2019-09-11 , DOI: 10.1089/ten.teb.2019.0100
Le Jiang 1, 2 , Yingjin Wang 1, 2 , Zhongqun Liu 1, 2 , Chunyang Ma 1, 2 , Hao Yan 1, 2 , Nan Xu 1, 2 , Fangli Gang 1, 2, 3 , Xiumei Wang 1, 2 , Lingyun Zhao 1, 2 , Xiaodan Sun 1, 2
Affiliation  

The goal of tissue engineering scaffolds is to simulate the physiological microenvironment, in which the electrical microenvironment is an important part. Hydrogel is an ideal material for tissue engineering scaffolds because of its soft, porous, water-bearing, and other extracellular matrix-like properties. However, the hydrogel matrix is usually not conductive and can hinder the communication of electrical signals between cells, which promotes researchers' attention to conductive hydrogels. Conductive hydrogels can promote the communication of electrical signals between cells and simulate the physiological microenvironment of electroactive tissues. Hydrogel formation is an important step for the application of hydrogels in tissue engineering. In situ forming of injectable hydrogels and customized forming of three-dimensional (3D) printing hydrogels represent two most potential advanced forming processes, respectively. In this review, we discuss (i) the classification, properties, and advantages of conductive hydrogels, (ii) the latest development of conductive hydrogels applied in myocardial, nerve, and bone tissue engineering, (iii) advanced forming processes, including injectable conductive hydrogels in situ and customized 3D printed conductive hydrogels, (iv) the challenges and opportunities of conductive hydrogels for tissue engineering. Impact Statement Biomimetic construction of electro-microenvironment is a challenge of tissue engineering. The development of conductive hydrogels provides possibility for the construction of biomimetic electro-microenvironment. However, the importance of conductive hydrogels in tissue engineering has not received enough attention so far. Herein, various conductive hydrogels and their tissue engineering applications are systematically reviewed. Two potential methods of conductive hydrogel forming, in situ forming of injectable conductive hydrogels and customized forming of three-dimensional printing conductive hydrogels, are introduced. The current challenges and future development directions of conductive hydrogels are comprehensively overviewed. This review provides a guideline for tissue engineering applications of conductive hydrogels.

中文翻译:

用于组织工程应用的三维印刷和可注射导电水凝胶。

组织工程支架的目的是模拟生理微环境,其中电微环境是重要的部分。水凝胶具有柔软,多孔,含水和其他类似细胞外基质的特性,因此是组织工程支架的理想材料。但是,水凝胶基质通常是不导电的,会阻碍细胞之间电信号的传递,从而引起研究人员对导电水凝胶的关注。导电水凝胶可以促进细胞之间电信号的传递,并模拟电活性组织的生理微环境。水凝胶的形成是水凝胶在组织工程中的应用的重要步骤。可注射水凝胶的原位形成和三维(3D)打印水凝胶的定制形成分别代表着两种最有潜力的先进成型过程。在这篇综述中,我们讨论(i)导电水凝胶的分类,性质和优势,(ii)应用于心肌,神经和骨组织工程的导电水凝胶的最新发展,(iii)先进的成型工艺,包括可注射的导电原位水凝胶和定制的3D打印导电水凝胶,(iv)导电水凝胶在组织工程中的挑战和机遇。影响陈述电微环境的仿生构造是组织工程学的一个挑战。导电水凝胶的开发为仿生电微环境的构建提供了可能性。然而,到目前为止,导电水凝胶在组织工程中的重要性尚未引起足够的重视。在此,系统地回顾了各种导电水凝胶及其组织工程应用。介绍了两种潜在的导电水凝胶形成方法,即可注射导电水凝胶的原位形成和三维印刷导电水凝胶的定制形成。全面概述了导电水凝胶的当前挑战和未来的发展方向。这篇综述为导电水凝胶的组织工程应用提供了指南。介绍了两种潜在的导电水凝胶形成方法,即可注射导电水凝胶的原位形成和三维印刷导电水凝胶的定制形成。全面概述了导电水凝胶的当前挑战和未来的发展方向。这篇综述为导电水凝胶的组织工程应用提供了指南。介绍了两种潜在的导电水凝胶形成方法,即可注射导电水凝胶的原位形成和三维印刷导电水凝胶的定制形成。全面概述了导电水凝胶的当前挑战和未来的发展方向。这篇综述为导电水凝胶的组织工程应用提供了指南。
更新日期:2019-11-01
down
wechat
bug