当前位置: X-MOL 学术Appl. Bionics Biomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prediction Algorithm of Parameters of Toe Clearance in the Swing Phase.
Applied Bionics and Biomechanics ( IF 2.2 ) Pub Date : 2019-08-14 , DOI: 10.1155/2019/4502719
Tamon Miyake 1 , Masakatsu G Fujie 2 , Shigeki Sugano 2
Affiliation  

The adaptive control of gait training robots is aimed at improving the gait performance by assisting motion. In conventional robotics, it has not been possible to adjust the robotic parameters by predicting the toe motion, which is considered a tripping risk indicator. The prediction of toe clearance during walking can decrease the risk of tripping. In this paper, we propose a novel method of predicting toe clearance that uses a radial basis function network. The input data were the angles, angular velocities, and angular accelerations of the hip, knee, and ankle joints in the sagittal plane at the beginning of the swing phase. In the experiments, seven subjects walked on a treadmill for 360 s. The radial basis function network was trained with gait data ranging from 20 to 200 data points and tested with 100 data points. The root mean square error between the true and predicted values was 3.28 mm for the maximum toe clearance in the earlier swing phase and 2.30 mm for the minimum toe clearance in the later swing phase. Moreover, using gait data of other five subjects, the root mean square error between the true and predicted values was 4.04 mm for the maximum toe clearance and 2.88 mm for the minimum toe clearance when the walking velocity changed. This provided higher prediction accuracy compared with existing methods. The proposed algorithm used the information of joint movements at the start of the swing phase and could predict both the future maximum and minimum toe clearances within the same swing phase.

中文翻译:

摆动阶段趾间隙参数的预测算法。

步态训练机器人的自适应控制旨在通过辅助运动来改善步态性能。在传统的机器人技术中,不可能通过预测脚趾运动来调整机器人参数,脚趾运动被认为是绊倒危险指标。步行过程中脚趾间隙的预测可以降低​​绊倒的风险。在本文中,我们提出了一种使用径向基函数网络的脚趾间隙预测新方法。输入数据是在摆动阶段开始时矢状平面中髋,膝和踝关节的角度,角速度和角加速度。在实验中,七名受试者在跑步机上行走了360秒。使用范围从20到200个数据点的步态数据训练径向基函数网络,并使用100个数据点进行测试。真实值和预测值之间的均方根误差在早期摆动阶段的最大脚趾间隙为3.28 mm,在后期摆动阶段的最小脚趾间隙为2.30 mm。此外,使用其他五名受试者的步态数据,当步行速度改变时,真实值和预测值之间的均方根误差为最大脚趾间隙为4.04 mm,最小脚趾间隙为2.88 mm。与现有方法相比,这提供了更高的预测精度。所提出的算法在挥杆阶段开始时使用了关节运动的信息,并且可以预测同一挥杆阶段内将来的最大和最小脚趾间隙。30 mm,以便在以后的摆动阶段保持最小的脚趾间隙。此外,使用其他五名受试者的步态数据,当步行速度改变时,真实值和预测值之间的均方根误差为最大脚趾间隙为4.04 mm,最小脚趾间隙为2.88 mm。与现有方法相比,这提供了更高的预测精度。所提出的算法在挥杆阶段开始时使用了关节运动的信息,并且可以预测同一挥杆阶段内将来的最大和最小脚趾间隙。30 mm,以便在以后的摆动阶段保持最小的脚趾间隙。此外,使用其他五名受试者的步态数据,当步行速度改变时,真实值和预测值之间的均方根误差为最大脚趾间隙为4.04 mm,最小脚趾间隙为2.88 mm。与现有方法相比,这提供了更高的预测精度。所提出的算法在挥杆阶段开始时使用了关节运动的信息,并且可以预测同一挥杆阶段内将来的最大和最小脚趾间隙。与现有方法相比,这提供了更高的预测精度。所提出的算法在挥杆阶段开始时使用了关节运动的信息,并且可以预测同一挥杆阶段内将来的最大和最小脚趾间隙。与现有方法相比,这提供了更高的预测精度。所提出的算法在挥杆阶段开始时使用了关节运动的信息,并且可以预测同一挥杆阶段内将来的最大和最小脚趾间隙。
更新日期:2019-08-14
down
wechat
bug