当前位置: X-MOL 学术Curr. Zool. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Editorial. Cognitive ecology of pollinators and the main determinants of foraging plasticity
Current Zoology ( IF 2.2 ) Pub Date : 2019-08-01 , DOI: 10.1093/cz/zoz036
David Baracchi 1
Affiliation  

The long-lasting coevolution between flowering plants and associate pollinators has made both partners intimately connected and reciprocally dependent on one another (Chittka and Thomson 2001; Harder and Barrett 2006; Waser and Ollerton 2006). The interaction between plants and pollinators rests mostly on a mutualistic exchange: plants invest in the production of nectar and pollen to reward pollinators who, in turn, sustain plant reproduction by vectoring their pollen to conspecific flowers (Harder and Barrett 2006; Waser and Ollerton 2006). From a pollinator’s perspective, a meadow is a rich marketplace consisting of a multitude of flower species offering sweet rewards for free. Yet, foraging is anything but an easy task. Flowers are diverse, sometimes difficult to handle, and offer only inconsistent minute rewards. Flower-visiting invertebrates such as bees, butterflies, flies, or vertebrates such as birds and bats must make thousands of sequential decisions during each foraging bout. Making use of a number of factors including spatial distribution, availability, abundance, ease of handling, and, most importantly, the quantity and quality of the reward, pollinators must make economic decisions to ensure a net gain of resources (Chittka and Thomson 2001). Therefore, it is not surprising that pollinators naturally excel in cognitive abilities such as flower discrimination, reward evaluation, learning and memory, copying and navigation (Chittka and Thomson 2001; Menzel and Giurfa 2006; Srinivasan 2010; Avarguès-Weber et al. 2011; Giurfa 2013; Chittka 2017). Although all the overmentioned cognitive abilities are fundamental requirements to optimize foraging efficiency, they explain only partially how pollinators manage to behave according to the optimal foraging theory (Stephens and Krebs 1986). Indeed, one of the most challenging aspects that pollinators face during foraging is represented by the unpredictable ecological circumstances that typically characterize the natural environment (Danchin et al. 2004; Dall et al. 2005). Flowers are ephemeral, ever-changing in space and time. The absolute and relative value of the rewards provided by flowering plants depends on weather conditions, seasons, the succession of bloom, and the presence of other pollinators. Therefore, pollinators not only must be able to find, discriminate, and memorize the best flowers available in the surroundings, but they also need to readily react and tune to a fast-changing world. Needless to say, pollinators excel also in their foraging flexibility. Indeed, pollinators’ capability to value options and make economic decisions is undoubtedly rooted in their extraordinary behavioral and cognitive plasticity. Both innateand experience-dependent preferences guide pollinators’ decision-making process (Menzel 1985). Although pollinators have innate predilections for certain flower traits such as color (Giurfa et al. 1995; Weiss 1997; Raguso 2001), shape (Lehrer et al. 1995; Kelber 1997), or size (Dafni and Kevan 1997; Johnson and Dafni 1998; Giurfa and Lehrer 2001), they also exhibit rapid sensory learning in which they can quickly associate flower traits with a reward value (Menzel 1985, 1990; Spaethe et al. 2001). This plasticity allows pollinators to selectively respond to cues and optimize their foraging behavior. Preferences can change quickly under changing conditions. However, once a reward source has been established, pollinators can show solid flower constancy, in which they are loyal to the learned flowers while bypassing other equally rewarding flowers (Free 1963, 1970; Chittka et al. 1999). This behavior is likely to increase the rate of consecutive conspecific flower visitations and thus the chance of cross-pollination. Therefore, plant competition for pollinators is increased, as it is even more vital to capture their selective attention. From a plant’s perspective, pollinators are a unique resource of greedy customers to retain. Attracting and retaining customers is top priority for any flowering plant. Visibility is key, and if you are a plant in a meadow your flowers must stand out from other flowers and the green background, be easily localizable, and, crucially, more memorable than others. This further enhances the selective pressure on floral traits. Flowers exploit a variety of signals and traits to attract or, at times, deter specific pollinators (Adler 2000; Irwin et al. 2004; Lunau et al. 2011; van der Kooi et al. 2018). It has been demonstrated that flower colors are commonly tuned to the visual system of functional groups of pollinators such as bees, flies, and birds (Kay 1976). For instance, flowers selectively reflect long or short

中文翻译:

社论。传粉者的认知生态学和觅食可塑性的主要决定因素

开花植物和传粉媒介之间的长期共同进化使双方密切相关并相互依赖(Chittka 和 Thomson 2001;Harder 和 Barrett 2006;Waser 和 Ollerton 2006)。植物和传粉者之间的相互作用主要基于互惠交换:植物投资于花蜜和花粉的生产以奖励传粉者,传粉者反过来通过将花粉引导至同种花来维持植物繁殖(Harder 和 Barrett 2006;Waser 和 Ollerton 2006 )。从传粉者的角度来看,草地是一个丰富的市场,由众多免费提供甜蜜奖励的花卉组成。然而,觅食绝非易事。鲜花种类繁多,有时难以处理,并且只能提供不一致的微小奖励。蜜蜂、蝴蝶、苍蝇等访花无脊椎动物或鸟类和蝙蝠等脊椎动物在每次觅食过程中必须做出数以千计的连续决定。利用许多因素,包括空间分布、可用性、丰度、易于处理,以及最重要的是奖励的数量和质量,传粉者必须做出经济决策以确保资源的净收益(Chittka 和 Thomson 2001) . 因此,授粉者自然而然地在识别花朵、奖励评估、学习和记忆、复制和导航等认知能力方面表现出色也就不足为奇了(Chittka 和 Thomson 2001;Menzel 和 Giurfa 2006;Srinivasan 2010;Avarguès-Weber 等人 2011; Giurfa 2013 年;Chittka 2017 年)。尽管所有上述认知能力都是优化觅食效率的基本要求,但它们仅部分解释了传粉者如何根据最佳觅食理论(Stephens and Krebs 1986)设法表现。事实上,授粉者在觅食过程中面临的最具挑战性的方面之一是不可预测的生态环境,这些生态环境通常是自然环境的特征(Danchin 等人,2004 年;Dall 等人,2005 年)。花是短暂的,在空间和时间中不断变化。开花植物提供的奖励的绝对和相对价值取决于天气条件、季节、开花的连续性以及其他传粉媒介的存在。因此,传粉者不仅必须能够找到、辨别和记住周围最好的花朵,但他们也需要对瞬息万变的世界做出快速反应和调整。毋庸置疑,传粉者在觅食灵活性方面也很出色。事实上,授粉者评估选择和做出经济决策的能力无疑植根于他们非凡的行为和认知可塑性。先天和依赖经验的偏好都指导传粉者的决策过程(Menzel 1985)。尽管传粉者对某些花的性状有先天的偏好,例如颜色(Giurfa 等人 1995;Weiss 1997;Raguso 2001)、形状(Lehrer 等人 1995;Kelber 1997)或大小(Dafni 和 Kevan 1997;Johnson 和 Dafni 19 ;Giurfa 和 Lehrer 2001),它们还表现出快速的感官学习,可以快速将花朵特征与奖励值联系起来(Menzel 1985、1990;Spaethe 等人 2001)。这种可塑性使传粉者能够选择性地响应线索并优化它们的觅食行为。偏好可以在不断变化的条件下迅速改变。然而,一旦建立了奖励来源,传粉者就可以表现出稳定的花朵稳定性,在这种情况下,它们忠于所学的花朵,同时绕过其他同等奖励的花朵(Free 1963, 1970; Chittka et al. 1999)。这种行为可能会增加连续同种花卉访问的速度,从而增加异花授粉的机会。因此,植物对传粉媒介的竞争加剧,因为吸引它们的选择性注意力更为重要。从植物的角度来看,传粉者是一种独特的资源,可以留住贪婪的客户。吸引和留住客户是任何开花植物的首要任务。可见性是关键,如果您是草地上的一株植物,您的花朵必须从其他花朵和绿色背景中脱颖而出,易于定位,而且最重要的是,比其他花朵更令人难忘。这进一步增强了对花卉性状的选择压力。花利用各种信号和特征来吸引或有时阻止特定的传粉媒介(Adler 2000;Irwin 等人,2004 年;Lunau 等人,2011 年;van der Kooi 等人,2018 年)。已经证明,花的颜色通常与蜜蜂、苍蝇和鸟类等传粉者的功能群的视觉系统相匹配(Kay 1976)。例如,花朵有选择地反射长短 花利用各种信号和特征来吸引或有时阻止特定的传粉媒介(Adler 2000;Irwin 等人,2004 年;Lunau 等人,2011 年;van der Kooi 等人,2018 年)。已经证明,花的颜色通常与蜜蜂、苍蝇和鸟类等传粉者的功能群的视觉系统相匹配(Kay 1976)。例如,花朵有选择地反射长短 花利用各种信号和特征来吸引或有时阻止特定的传粉媒介(Adler 2000;Irwin 等人,2004 年;Lunau 等人,2011 年;van der Kooi 等人,2018 年)。已经证明,花的颜色通常与蜜蜂、苍蝇和鸟类等传粉者的功能群的视觉系统相匹配(Kay 1976)。例如,花朵有选择地反射长短
更新日期:2019-08-01
down
wechat
bug