当前位置: X-MOL 学术Biofabrication › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Porous tissue strands: avascular building blocks for scalable tissue fabrication.
Biofabrication ( IF 9 ) Pub Date : 2018-11-24 , DOI: 10.1088/1758-5090/aaec22
Yang Wu 1 , Monika Hospodiuk , Weijie Peng , Hemanth Gudapati , Thomas Neuberger , Srinivas Koduru , Dino J Ravnic , Ibrahim T Ozbolat
Affiliation  

The scalability of cell aggregates such as spheroids, strands, and rings has been restricted by diffusion of nutrient and oxygen into their core. In this study, we introduce a novel concept in generating tissue building blocks with micropores, which represents an alternative solution for vascularization. Sodium alginate porogens were mixed with human adipose-derived stem cells, and loaded into tubular alginate capsules, followed by de-crosslinking of the capsules. The resultant cellular structure exhibited a porous morphology and formed cell aggregates in the form of strands, called 'porous tissue strands (pTSs).' Three-dimensional reconstructions show that pTSs were able to maintain ∼25% porosity with a high pore interconnectivity (∼85%) for 3 weeks. Owing to the porous structure, pTSs showed up-regulated cell viability and proliferation rate as compared to solid counterparts throughout the culture period. pTSs also demonstrated self-assembly capability through tissue fusion yielding larger-scale patches. In this paper, chondrogenesis and osteogenesis of pTSs were also demonstrated, where the porous microstructure up-regulated both chondrogenic and osteogenic functionalities indicated by cartilage- and bone-specific immunostaining, quantitative biochemical assessment and gene expression. These findings indicated the functionality of pTSs, which possessed controllable porosity and self-assembly capability, and had great potential to be utilized as tissue building blocks in distinct applications such as cartilage and bone regeneration.

中文翻译:

多孔组织束:无血管构造块,可扩展组织制造。

营养素和氧气扩散到其核心中,限制了细胞聚集体(如球体,链和环)的可扩展性。在这项研究中,我们介绍了一种产生具有微孔的组织构件的新颖概念,它代表了血管化的替代解决方案。将海藻酸钠致孔剂与人脂肪来源的干细胞混合,并装入管状海藻酸盐胶囊中,然后使胶囊去交联。所得的细胞结构表现出多孔形态,并形成了称为“多孔组织链(pTSs)”的链形式的细胞聚集体。三维重建显示,pTSs能够保持〜25%的孔隙度,并具有高的孔连通性(〜85%)3周。由于多孔结构,与整个培养期间的固体对应物相比,pTSs显示出细胞活力和增殖速率上调。pTSs还显示出通过组织融合产生更大补丁的自组装能力。在本文中,还证明了pTS的软骨形成和成骨作用,其中多孔微结构上调了软骨和骨特异性免疫染色,定量生化评估和基因表达所指示的成软骨和成骨功能。这些发现表明pTS的功能,其具有可控制的孔隙率和自组装能力,并且在作为软骨和骨再生等不同应用中被用作组织构建块的巨大潜力。pTSs还显示出通过组织融合产生更大补丁的自组装能力。在本文中,还证明了pTS的软骨形成和成骨作用,其中多孔微结构上调了软骨和骨特异性免疫染色,定量生化评估和基因表达所指示的成软骨和成骨功能。这些发现表明pTS的功能,其具有可控制的孔隙率和自组装能力,并且在作为软骨和骨再生等不同应用中被用作组织构建块的巨大潜力。pTSs还显示出通过组织融合产生更大补丁的自组装能力。在本文中,还证明了pTS的软骨形成和成骨作用,其中多孔微结构上调了软骨和骨特异性免疫染色,定量生化评估和基因表达所指示的成软骨和成骨功能。这些发现表明pTS的功能,其具有可控制的孔隙率和自组装能力,并且在作为软骨和骨再生等不同应用中被用作组织构建块的巨大潜力。多孔微结构上调了软骨和骨特异性免疫染色,定量生化评估和基因表达所表明的软骨形成和成骨功能。这些发现表明pTS的功能,其具有可控制的孔隙率和自组装能力,并且在作为软骨和骨再生等不同应用中被用作组织构建块的巨大潜力。多孔微结构上调了软骨和骨特异性免疫染色,定量生化评估和基因表达所表明的软骨形成和成骨功能。这些发现表明了pTS的功能,它具有可控制的孔隙率和自组装能力,并且在作为软骨和骨再生等独特应用中用作组织构建基块的潜力很大。
更新日期:2019-11-01
down
wechat
bug