当前位置: X-MOL 学术Boundary-Layer Meteorol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations
Boundary-Layer Meteorology ( IF 4.3 ) Pub Date : 2018-02-14 , DOI: 10.1007/s10546-018-0335-9
J Antoon van Hooft 1 , Stéphane Popinet 2 , Chiel C van Heerwaarden 3 , Steven J A van der Linden 1 , Stephan R de Roode 1 , Bas J H van de Wiel 1
Affiliation  

We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

中文翻译:

大气边界层模拟的自适应网格

我们提出了适用于大气边界层模拟的自适应网格细化方法的概念验证。这种方法可以成为静态网格的有吸引力的替代方案,用于研究在空间和/或时间上具有高度尺度分离的大气流动。例子包括昼夜循环和被强逆温覆盖的对流边界层。对于这种情况,使用规则网格的大涡模拟通常必须依赖于空间和/或时间域中最具挑战性的区域的亚网格尺度闭合。在这里,我们分析了一种流动配置,该配置使用直接数值模拟 (DNS) 来描述对流边界层的增长和随后的衰减。我们验证了获得的结果,并针对使用固定规则网格的两次运行对自适应求解器的性能进行了基准测试。似乎自适应网格算法能够动态地粗化和细化网格,同时保持准确的解决方案。特别是,在对流边界层的初始增长期间,与衰减湍流的后续阶段相比,需要高分辨率。更具体地说,网格单元的数量在模拟过程中变化了两个数量级。对于这种特定的 DNS 案例,自适应求解器并不比专用于这些类型流的更传统的求解器更有效。然而,总体分析表明,该方法具有对最具挑战性的大气情况进行数值研究的明显潜力。在对流边界层的初始增长过程中,与衰减湍流的后续阶段相比,需要高分辨率。更具体地说,网格单元的数量在模拟过程中变化了两个数量级。对于这种特定的 DNS 案例,自适应求解器并不比专用于这些类型流的更传统的求解器更有效。然而,总体分析表明,该方法具有对最具挑战性的大气情况进行数值研究的明显潜力。在对流边界层的初始增长过程中,与衰减湍流的后续阶段相比,需要高分辨率。更具体地说,网格单元的数量在模拟过程中变化了两个数量级。对于这种特定的 DNS 案例,自适应求解器并不比专用于这些类型流的更传统的求解器更有效。然而,总体分析表明,该方法具有对最具挑战性的大气情况进行数值研究的明显潜力。自适应求解器并不比专用于这些类型流的更传统的求解器更有效。然而,总体分析表明,该方法具有对最具挑战性的大气情况进行数值研究的明显潜力。自适应求解器并不比专用于这些类型流的更传统的求解器更有效。然而,总体分析表明,该方法具有对最具挑战性的大气情况进行数值研究的明显潜力。
更新日期:2018-02-14
down
wechat
bug