当前位置: X-MOL 学术Interdiscip. Sci. Comput. Life Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Identifying a Gene Knockout Strategy Using a Hybrid of Simple Constrained Artificial Bee Colony Algorithm and Flux Balance Analysis to Enhance the Production of Succinate and Lactate in Escherichia Coli.
Interdisciplinary Sciences: Computational Life Sciences ( IF 4.8 ) Pub Date : 2019-02-14 , DOI: 10.1007/s12539-019-00324-z
Mei Kie Hon 1 , Mohd Saberi Mohamad 2, 3 , Abdul Hakim Mohamed Salleh 1 , Yee Wen Choon 1 , Kauthar Mohd Daud 1 , Muhammad Akmal Remli 4 , Mohd Arfian Ismail 4 , Sigeru Omatu 5 , Richard O Sinnott 6 , Juan Manuel Corchado 7
Affiliation  

In recent years, metabolic engineering has gained central attention in numerous fields of science because of its capability to manipulate metabolic pathways in enhancing the expression of target phenotypes. Due to this, many computational approaches that perform genetic manipulation have been developed in the computational biology field. In metabolic engineering, conventional methods have been utilized to upgrade the generation of lactate and succinate in E. coli, although the yields produced are usually way below their theoretical maxima. To overcome the drawbacks of such conventional methods, development of hybrid algorithm is introduced to obtain an optimal solution by proposing a gene knockout strategy in E. coli which is able to improve the production of lactate and succinate. The objective function of the hybrid algorithm is optimized using a swarm intelligence optimization algorithm and a Simple Constrained Artificial Bee Colony (SCABC) algorithm. The results maximize the production of lactate and succinate by resembling the gene knockout in E. coli. The Flux Balance Analysis (FBA) is integrated in a hybrid algorithm to evaluate the growth rate of E. coli as well as the productions of lactate and succinate. This results in the identification of a gene knockout list that contributes to maximizing the production of lactate and succinate in E. coli.

中文翻译:

使用简单约束人工蜂群算法和通量平衡分析的混合物来鉴定基因敲除策略,以提高大肠杆菌中琥珀酸和乳酸的产生。

近年来,由于代谢工程能够操纵代谢途径来增强目标表型的表达,因此代谢工程已在许多科学领域引起了广泛关注。因此,在计算生物学领域已经开发了许多执行遗传操作的计算方法。在代谢工程中,尽管产生的产量通常远低于其理论最大值,但已采用常规方法来提高大肠杆菌中乳酸和琥珀酸的产生。为了克服这种传统方法的缺点,引入了混合算法的开发,以通过在大肠杆菌中提出基因敲除策略来获得最佳解决方案,该策略能够提高乳酸和琥珀酸的产生。使用群体智能优化算法和简单约束人工蜂群(SCABC)算法对混合算法的目标函数进行优化。通过类似于大肠杆菌中的基因敲除,结果使乳酸盐和琥珀酸盐的产量最大化。助焊剂平衡分析(FBA)被集成在混合算法中,以评估大肠杆菌的生长速率以及乳酸和琥珀酸的产量。这导致鉴定出基因敲除清单,该清单有助于最大程度地提高大肠杆菌中乳酸和琥珀酸的产量。助焊剂平衡分析(FBA)被集成在混合算法中,以评估大肠杆菌的生长速率以及乳酸和琥珀酸的产量。这导致鉴定出基因敲除清单,该清单有助于最大程度地提高大肠杆菌中乳酸和琥珀酸的产量。助焊剂平衡分析(FBA)被集成在混合算法中,以评估大肠杆菌的生长速率以及乳酸和琥珀酸的产量。这导致鉴定出基因敲除清单,该清单有助于最大程度地提高大肠杆菌中乳酸和琥珀酸的产量。
更新日期:2019-11-01
down
wechat
bug