当前位置: X-MOL 学术Nano Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D printed bionic nanodevices
Nano Today ( IF 17.4 ) Pub Date : 2016-06-01 , DOI: 10.1016/j.nantod.2016.04.007
Yong Lin Kong 1 , Maneesh K Gupta 2 , Blake N Johnson 3 , Michael C McAlpine 4
Affiliation  

The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the versatility of extrusion-based 3D printing technologies to interweave nanomaterials and fabricate novel bionic devices.

中文翻译:

3D打印仿生纳米器件

生物材料和功能材料三维交织的能力可以创造出具有独特且引人注目的几何形状、特性和功能的仿生设备。事实上,高性能有源设备与生物学的接口可能会影响多个领域,包括再生生物电子医学、智能假肢、医疗机器人和人机界面。生物学,从DNA和蛋白质的分子尺度,到组织和器官的宏观尺度,都是三维的,通常是柔软且可拉伸的,并且对温度敏感。这使得大多数生物平台与为功能电子产品开发和优化的制造和材料加工方法不兼容,功能电子产品通常是平面的、刚性的和脆性的。已经制定了许多策略来克服这些二分法。一种特别新颖的方法是使用基于挤出的多材料 3D 打印,这是一种增材制造技术,可提供自由形式的制造策略。该方法通过以下方式解决了上述二分法:(1) 使用 3D 打印和成像来定制、分层和交织的设备架构;(2) 采用纳米技术作为引入高性能材料的有利途径,具有表现出本体所没有的特性的潜力;(3) 3D 打印一系列软质和纳米级材料,以实现多种高质量功能性纳米材料与生物学的整合。此外,3D 打印是一个多尺度平台,允许结合功能性纳米级墨水、打印微米级特征,并最终创建宏观设备。3D 打印、新颖的纳米材料特性和“活”平台的融合可能会催生下一代仿生系统。在这篇综述中,我们重点介绍了纳米材料的独特性能与基于挤出的 3D 打印技术的多功能性的协同集成,以交织纳米材料并制造新型仿生设备。
更新日期:2016-06-01
down
wechat
bug